
Free-Range Code

Adam Sampson
University of Abertay Dundee

Overview

● I've been involved in several academic open
source projects – some successful, some not

● Why might open source be of interest to you?
● How can you make it work in an academic

context?
● I am not a lawyer; none of this is legal advice

Open source

Licenses

● A license describes what you're allowed to do
with a piece of software you receive

● Legally, without a license, you're allowed to do
almost nothing – the copyright owner must
provide one to make the software useful

● Most software licenses are long and complex...
– ... so most users – and developers – don't bother

reading them

The Open Source Definition

● Anyone may redistribute the software, without
paying a fee

● The software may be distributed in source code
or compiled form

● Modifications and derived works are permitted
under the same license as the original

● No restrictions on use, or discrimination against
particular groups of people or fields of work

What does that mean?

● If you receive a piece of Open Source software,
you can do all these things:
– Use it

– Make modifications and customisations

– Give or sell copies of it to other people

– Sell support services for it

– Incorporate it into other projects

● ... provided you follow the terms of the license

Why open source?

● From the user's perspective:
– no licensing fees

– no vendor lock-in

– you can freely share it with others

– you can customise it for your purposes

● From the developer's perspective:
– avoid duplicating work – good business sense

– widely-used software is widely-tested:
more eyes means fewer bugs

The scientist's view

● The validity of our results relies upon the
correctness of our software

– Data collection, simulation, analysis, visualisation

– People aren't skeptical enough!

● The use of software is an increasingly important
part of the experimental method

● So we should aim to publish the software we
build as part of our method

– … including spreadsheets, MATLAB/R scripts...

The scientist's view

● We should do our best to ensure our software
works correctly

● Decent software engineering is hard work...
– … so build on a solid foundation

● Make platforms and tools available for reuse in
later work, rather than developing from scratch

– Plenty of examples of this already

– But development must be sustainable

Sustainability

● A healthy, ongoing, long-lived project
● Cooperating team of developers and occasional

contributors
● Actively maintained:

– problems are identified and fixed

– new features added as required

– the project adapts to changing circumstances

● Users and developers can easily obtain and
make use of the software

Looking at licenses

The BSD license

● A permissive license
– The simplest license that's widely used

– Most licenses have more conditions

● Originally developed at Berkeley around 1990
– Modified (and simplified) several times

BSD license (2-clause version)

Copyright (c) <year>, <copyright holder>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

... warranty disclaimer ...

BSD license: disclaimer

THIS SOFTWARE IS PROVIDED BY <copyright holder> ''AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL <copyright holder> BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Other options

● Other licenses offer different features
● Copyleft licenses say that if you distribute a

modified version of the software, you must also
distribute the corresponding source code

– Encourages people to contribute work back

– e.g. GNU General Public License

● Patent grant licenses protect users against
software patent infringement

– e.g. Apache license

Licenses for non-software

● These licenses assume you're talking about
software (has source code, etc.)

● Similar licenses exist that can be used for
documentation, graphics, scientific data...

● The Creative Commons licenses are the best-
known example: several options for specifying
how your work can be reused

How to do it

1 Consider the context

● How will you use the software in the future?
● Will others use it? (Is it worth releasing?)
● Are there existing projects that you can work

with or build upon?
● Is there anything that'd prevent (or delay) you

from releasing the software?
– Pending publications

– Patent problems

2 Get permission

● Identify the copyright owner
● You're probably not the copyright owner –

especially if you're a student or working on a
funded project

● If you aren't absolutely certain, ask your local
intellectual property expert

– Talk to other people who've done this

– It's definitely better to ask permission than to seek
forgiveness here

3 Use version control

● Version control software keeps track of the
history of changes to your project, and makes it
possible for developers to collaborate safely

● Good software engineering practice
● Especially important for open source: it enables

external collaboration, and makes releasing
software easier

● Many good, free VC systems: Subversion, Git...

4 Choose a license

● There are hundreds of existing licenses
● Pick one that is widely-used

– BSD, Apache, GPL, LGPL...

● Make sure you understand the license, and that
it meets your project's needs

● Do not under any circumstances attempt to
write your own license

– You will get it wrong

– Many, many examples of this

5 Find a home

● Somewhere to host the project web site, version
control history, files for users to download...

● Regular, reliable, automated backups
● Public, private, or some mix of the two?

Hosting options

● WIthin the university
– Will it still be there after you leave?

– Can external contributors work with it?

● A commercial service (SourceForge, GitHub)
– Are the licensing and privacy conditions OK?

– If so, usually free; can pay when they aren't

● Host it yourself
– Is the service reliable?

– Who will pay for it and look after it?

6 Keep it tidy

● Make it easy for others to use and reuse
● Write sufficient documentation

– Both for end-users and other developers

– Examples and test cases are really useful

● Follow convention as far as possible
– e.g. how you package your software

– Look at what similar, successful projects do

● Clear copyright statements and license terms
● Make releases!

7 Provide infrastructure

● Project web site
– Stable location

– Description, downloads, instructions, contacts

– Name and logo

● Support discussion: mailing list, forum...
● Provide help: FAQ, wiki...
● Keep track of problems: issue tracking
● A hosting service will give you most of this

without much effort

8 Advertise

● Mention the project in papers, posters,
presentations, web pages...

● Are there other researchers who would be
interested in using (and contributing to) it?

● How about members of the public?
– Unconferences, user groups, science cafes...

– List on open source software sites – can get
surprising reuse

● Impact

9 Support the community

● Be responsive
● Help with problems (feed into documentation)
● Discuss plans (news blog, etc.)
● Encourage collaboration

– Make contributors feel welcome

– Provide helpful feedback on contributions

– (but learn to say “no” when appropriate)

10 Let go

● Be willing to give up some control for the good
of the project

● Encourage branching
– … where someone else maintains a modified

version of your code for a different purpose

● If you don't have time to maintain it yourself, let
someone else take over

Conclusions

Conclusions

● Advantages of open source for science:
– Avoid duplicated work

– Improve software quality

– Make collaboration easier

– Assist with public engagement

– Build confidence in validity of results

● General advice: follow what the successful
projects do!

Resources

● OSS Watch
UK academic open source advisory service
http://www.oss-watch.ac.uk/

● Software Carpentry
Software engineering for scientists
http://software-carpentry.org/

● Thank you for listening – any questions?

License details

● This presentation is:
© 2010, 2011 Adam Sampson
This work is licensed under a Creative
Commons Attribution-ShareAlike 3.0 Unported
License.

● The image on the title page is:
© 2008 Woodley Wonderworks, CC BY 2.0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

