
Chapter 22

Matching and Modifying with
Generics
Neil C. C. Brown1, Adam T. Sampson2

Category: Research Paper

Abstract: Haskell has powerful features such as pattern matching and recursive
data types for building tree structures easily. These features are not without prob-
lems, however: patterns are not composable and cannot be abbreviated; it can be
hard to modify a specific part of a large tree structure without unique identifiers.
This paper explains how a particular Haskell generics approach, Scrap Your Boil-
erplate, can be used to solve both of these problems in Haskell, without the need
for meta-programming or new language features.

22.1 INTRODUCTION

Haskell allows programmers to use pattern matching in several contexts, most
notably function equations, to match data structures and bind variables. One
problem with Haskell’s pattern matching is that the entirety of a pattern must
be written together; patterns are not composable or reusable. In addition, pattern
matching cannot enforce the equality of two subcomponents; for example, they
cannot match a list with the first two elements being equal.

Haskell’s data structures can be recursive and mutually recursive, which al-
lows complex heterogenous tree structures to be expressed. Data in functional
languages is immutable, so tree structures are modified by walking the entirety of
a tree and effectively building a new tree. It is difficult to ‘remember’ the location
of a particular sub-tree during one traversal and later traverse to it again later, in
the absence of unique identifiers for nodes.

1Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK
neil@twistedsquare.com

2Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK
ats@offog.org

XXII–1

XXII–2 CHAPTER 22. MATCHING AND MODIFYING WITH GENERICS

In this paper we show how to use a generics library to solve both of these
shortcomings. We have made composable patterns with more advanced capabil-
ities than those of standard Haskell pattern matching (described in section 22.2).
We also solve the problem of recording the position of an arbitrary sub-tree in a
complex heterogenous tree in order to traverse to it again later (see section 22.3).

The generics approach used here is Scrap Your Boilerplate (SYB); a Haskell
library that supports generic programming in Haskell using two commonly avail-
able language extensions (rank-2 polymorphism and a type-safe cast operator)
[5, 6, 7]. It has since formed the basis for other further work [2, 4, 8]. SYB is
available in the GHC Haskell compiler in the module Data.Generics.

22.2 PATTERN MATCHING

Haskell supports pattern matching over data-types, allowing different constructors
of an algebraic data type to be handled separately. Pattern-matching can:

• match complex structures of any depth according to their structure, and

• bind of elements of the match to variables, to be used later on.

However, pattern-matching:

• lacks support for composition or abbreviation, and

• is unable to relate sub-elements of a structure to each other while pattern
matching.

We will explain a technique that retains the first two capabilities, while solv-
ing the latter two shortcomings. We treat binding of variables orthogonally from
structural constraints in patterns (such as Just [,]). For our purposes here, we
will therefore consider a standard variable binding in a pattern match x to be x@ ;
that is, a binding without structural constraint.

22.2.1 Compiler Examples

We use Haskell to write Tock, a source-to-source nanopass compiler for parallel
languages, compiling from languages such as occam-π [13] into C or C++. The
idea behind the nanopass methodology is that the compiler is composed of a large
number of small independent passes that each alter a central Abstract Syntax Tree
(AST) in one regard (for example, resolving names) [9]. An added advantage of
the nanopass methodology is that the passes are easy to unit-test.

We use pattern-matching to check that the actual output value of a pass matches
our expectation. For example, occam-π allows parallel assignments. One pass in
the compiler takes parallel assignments of the form on the left below (that assigns
x to y in parallel with y to x), and flattens them into a sequential form involving
temporary variables on the right, where t is a new (uniquely-named) temporary
variable:

22.2. PATTERN MATCHING XXII–3

x, y := y, x

SEQ
t := x
x := y
y := t

For simplicity, we will omit discussing the issue of declaring t.
Our Haskell function for checking the output of the transformation pass is3:

check (SeqBlock [Assign [Variable temp0] [Variable "x"],
Assign [Variable "x"] [Variable "y"],
Assign [Variable "y"] [Variable temp1]])

= temp0 == temp1
check = False

The problems with pattern-matching are apparent in this example: there is a
lot of duplication, and we cannot directly check that the two temporary variables
are the same – instead we must check that after the pattern match. Imagine if we
also want to check that two consecutive swaps get transformed properly:

check2 (SeqBlock [Assign [Variable temp0] [Variable "x"],
Assign [Variable "x"] [Variable "y"],
Assign [Variable "y"] [Variable temp1]],
Assign [Variable temp2] [Variable "a"],
Assign [Variable "a"] [Variable "z"],
Assign [Variable "z"] [Variable temp3]])

= (temp0 == temp1) && (temp2 == temp3) && (temp0 /= temp2)
check2 = False

Despite the common aspects with our first check function, there is no simple
way to share the common code, because the patterns are not composable or ab-
breviatable.

We cannot form an expected value to check against, because the temporary
variables have dynamically generated names that are guaranteed to be unique.
We do not want to test the exact name of the temporary variables (which would
tie all our tests to our method of generating unique names), but instead test the
relationship between the various temporary variable names.

The problems with pattern-matching are in contrast to the ease of generating
the input data for the passes, where we can remove all duplication:

assign lhs rhs = Assign sp lhs rhs
var n = Variable sp n
swap vars = assign vars (reverse vars)

input1 = swap [var "x", var "y"]
input2 = SeqBlock sp [input1 , swap [var "a", var "z"]]

We will demonstrate how our pattern-matching techniques can remove dupli-
cation from our patterns, and allow different parts of the pattern to be given the
same label and automatically be matched with each other.

3For a complete definition of our AST types, see appendix A

XXII–4 CHAPTER 22. MATCHING AND MODIFYING WITH GENERICS

22.2.2 Approach

As others have noted [2], every data item in Haskell is a constructor with a number
of parameters/arguments (integers and similar types being nullary constructors).
This is apparent in the syntax for a pattern in Haskell; each part of a pattern is
a constructor, accompanied by a number of sub-patterns to match the construc-
tor’s arity. This matches with SYB’s spine view of data, where each data item is
decomposed into a constructor (of type Constr) and a number of sub-items. We
therefore marry SYB with pattern matching.

Our approach is centred around one new data-type (accompanied by a helper
function: double-underscore):

data Pattern = Anything | (:@) String Pattern | Structure Constr [Pattern]
deriving (Show, Typeable)

__ = Anything

This Pattern is powerful enough to match anything in Haskell that is an in-
stance of Data4, a type-class in SYB that can be automatically derived by GHC.
Anything can match anything. The :@ operator is like the @ in standard Haskell
pattern matching, applying a label to a pattern. As indicated earlier, the label x in
a standard pattern match is here written as x:@__. Any two parts of the pattern
with the same label must have the same value to match successfully. The Structure
pattern matches a specific data constructor, and then matches the first pattern in
the list with the first argument to the constructor and so on.

We can build patterns such as the following to match a Variable , ignore its
SourcePos (the first argument, and thus the first item in the list) and capture its
name (the second argument, hence the second item in the list):

Structure (toConstr (Variable undefined undefined)) [__, "varName":@__]

The toConstr function is from the SYB library, and has type:

toConstr :: Data a => a -> Constr

In order to call toConstr, we must pass it a fully-formed instance of the type
Variable . The constructor Variable is actually of type SourcePos -> String ->
Variable . Therefore we need to give the constructor two accompanying arguments
to produce a term of type Variable . Because toConstr never evaluates its argument,
the simple uniform approach of using undefined for all arguments is valid. Helper
functions are provided to easily use this technique:

con2 :: Data b => (a0 -> a1 -> b) -> Constr
con2 c = toConstr (c undefined undefined)

Structure (con2 Variable) [__, "varName":@__]

The items in the list for the second argument to Structure must all themselves
be patterns. This can be particularly long-winded when matching patterns for

4 Pattern is also an instance of Data, but we must derive this manually as Constr is not
itself an instance of Data.

22.2. PATTERN MATCHING XXII–5

lists (in this case, Strings); we must form patterns of a list in its cons-form. For
example, to match a variable named x:

Structure (con2 Variable) [__,
Structure (con2 ((:) :: Char -> String -> String))

[Structure (con0 ’x ’) [],
Structure (([]) :: String) []]]

An obvious step would be to create a helper function for the String type (or,
more generally, for lists). But we can simplify matters by taking advantage of
the dynamic typing of the Typeable class. Typeable is a super-class of Data that
provides a cast function that performs a safe run-time cast.

Functions of the form pattN are provided, that take a constructor, followed by
the appropriate number of arguments (N), and form a pattern using the Structure
constructor and the toPattern function:

patt2 :: (Data c0 , Data c1 , Data b) => (a0 -> a1 -> b) -> c0 -> c1 -> Pattern

In the type of the patt2 function, the types expected by the constructor (a0 and
a1) are separated from the types given to patt2 (c0 and c1); indeed, the a0 and a1
types are effectively part of a declaration of kind (∗ ->∗ ->∗) rather than type.
This is what allows the second (and third) arguments to be either a Pattern , or
an item of the correct type for the constructor (or an item of an unrelated type –
forming an invalid pattern, as discussed later on in section 22.2.3).

We can now write this very simple pattern: patt2 Variable __"x". Note how
the second argument to the patt2 function is a Pattern , whereas the third argument
is a String . No type annotations or extra functions are needed to differentiate the
two. To simplify our life further, we can even define helper functions such as:
var = patt2 Variable __.

We can now write our original full patterns (from section 22.2.1) as follows:

var = patt2 Variable __
label x = x :@ __
lhs <:=> rhs = patt3 Assign __ [lhs] [rhs]
seq = patt2 SeqBlock

swap var1 var2 temp
= [temp <:=> var1,

var1 <:=> var2,
var1 <:=> temp]

check t
= patternMatch (seq (swap (var "x") (var "y") (var (label "temp")))) t

check2 t
= do items <- patternMatch (seq

(swap (var "x") (var "y") (var (label "temp"))
(swap (var "a") (var "z") (var (label "temp2"))

) t
assertNotEqual (Map.lookup items "temp") (Map.lookup items "temp2")

XXII–6 CHAPTER 22. MATCHING AND MODIFYING WITH GENERICS

Note that the "x" and "y" items are Strings (variable names), whereas "temp"
is a label for a Pattern ; it is just coincidence that they look similar here (and that
"temp" labels a String item). The var function accepts either String or Pattern ,
due to the previously discussed mechanisms. Finally, there is no check for qual-
ity after the pattern match; the match itself takes care of checking the two items
labelled "temp" are the same, and that the two items labelled "temp2" are the
same. We must check that the two items are distinct separately, as we do not al-
ways need this restriction, so it is not built into the pattern-matching mechanisms.

22.2.3 Implementation

Creating Patterns

The implementations of the pattN functions are shown below. They all use the
toPattern function, which takes a value of a type belonging to the Data class and
turns it into a Pattern automatically. If the value is already of type Pattern , it is
used as-is. Otherwise the function uses toConstr, gmapQ and recursion to turn the
entire value into a Pattern . The gmapQ function maps a generic query over all
sub-terms of a constructor and returns a list of the results.

patt2 :: (Data c0 , Data c1 , Data b) => (a0 -> a1 -> b) -> c0 -> c1 -> Pattern
patt2 c x0 x1 = Structure (con2 c) [toPattern x0 , toPattern x1]

toPattern :: Data a => a -> Pattern
toPattern x = case cast x of

Just x’ -> x’
Nothing -> Structure (toConstr x) (gmapQ toPattern x)

Matching Labelled Items

We chose to implement the mechanism for ensuring items with the same label
have the same value by using an associative map in a state monad. The first time a
label is encountered, the appropriate value is inserted into the map. Every further
time the label is found in the pattern, the new value is compared to the stored
value. If they are not equal, the pattern match fails. We store the values (which
can be of any type) inside a simple wrapper type that maintains the Data constraint
on the item:

data AnyDataItem = forall a. Data a => ADI a

The equality operation for this type uses the geq function (a generic equality
comparison provided by SYB). For a dynamic type such as this, we are not aware
of any way to automatically use a type’s native Eq instance (when available). This
would be preferable to using geq, as it would allow programmers to provide their
own custom definition of equality for two items with the same label.

22.2. PATTERN MATCHING XXII–7

Pattern Matching

The implementation for matching a Pattern against a data structure is straightfor-
ward, descending the pattern and zipping together the two structures. When the
match fails, we give an error that highlights exactly which part of the match failed,
noting the expected value/pattern, and the actual value.

patternMatch :: (Data a , Data b) =>
a -> b -> Either String (Map String AnyDataItem)

patternMatch x y = evalStateT (patternMatch’ x y) Map.empty

type PatternM = StateT (Map String AnyDataItem) (Either String)

patternMatch’ :: (Data a , Data b) => a -> b -> PatternM ()
patternMatch’ Anything = return ()
patternMatch’ (label :@ item) x

= patternMatch’ item x >> recordItem label (ADI x)
patternMatch’ (Structure con items) x

| not (any (constrEq con) (dataTypeConstrs (dataTypeOf x)))
= throwError ... −− Inconsistent pattern

| not (constrEq con (toConstr x)) = throwError ... −− Constructors not equal
| otherwise = foldl Map.union (sequence (gmapFuncsQ funcs x))

where funcs = map patternMatch’ items

recordItem :: String -> AnyDataItem -> PatternM ()
recordItem label x
= do m <- get

case Map.lookup label m of
Just y -> if x == y then return ()

else throwError ... −− Labelled items did not match
Nothing -> put (Map.insert label x m)

We describe the implementation of gmapFuncsQ function in section 22.4 – it
maps a list of query functions over the sub-terms of a given value.

One unexpected problem arose with equality over the Constr type. The way Eq
for Constr has been defined (only comparing the indices of the constructor), only
Constr items of the same type can be compared safely. This means that if we auto-
matically derive Eq for the Pattern type then we encounter the slightly unexpected
equality: Structure (toConstr False) [] == Structure (toConstr LT) [] 5! Thus we
use our own constrEq function.

Invalid Patterns

With standard Haskell patterns, the compiler checks the types in a pattern. In our
library, Patterns can be nested together regardless of what type they match, and
thus it is possible to write a pattern which can never match. For example, the
pattern patt2 Variable 2 3 will compile correctly, even though it is nonsensical.

5LT being from the type Ordering

XXII–8 CHAPTER 22. MATCHING AND MODIFYING WITH GENERICS

We cannot easily remove this problem by, for example, parameterising Pattern
according to the type it matches. The Structure item holds a list of patterns that
need to match differently typed items, so we would have to wrap up the Pattern
items to hide their type; thus losing any advantage of giving them a type in the
first instance.

Instead we must detect this error at run-time. When comparing two construc-
tors (e.g. 2 from the above pattern, and the actual SourcePos constructor) we first
check that their type is the same. If not, then instead of failing with a “Did not
match” message, we fail with an “Inconsistent pattern – can never match” mes-
sage.

22.2.4 Modifiable Patterns

The parser in our compiler is itself a pass and so, like all passes, it has unit tests.
The SourcePos tags cause some problems in this regard. When parsing our short
piece of test code, the parser records the source position into the SourcePos items.
In order to specify the expected output exactly, we would have to figure out the
exact source positions of each item in our input string – a laborious process, not
to mention that inserting an extra space would ruin all the expected data!

Our first solution was to define a special SourcePos tag (anySP) and implement
custom equality so that anySP was deemed equal to any other SourcePos tag. An-
other solution would be to define a custom equality for other items in our AST
that ignores the inner SourcePos tags. However, our Patterns allow for a different
solution. When parsing the statement “x :=y” we write our expected test data
as normal data (i.e. no Patterns) using an arbitrary value, replaceSP, for any
SourcePos items:

var = Variable replaceSP
expectedVal = Assign replaceSP [var "x"] [var "y"]

This expected output is matched against the actual output by turning it into
a Pattern , and replacing all the replaceSP tags with the Anything pattern, using a
simple replacePattern function6:

replacePattern :: Pattern -> Pattern -> Pattern -> Pattern
replacePattern Anything = Anything
replacePattern find replacement original @(n :@ p)
| original == find = replacement
| otherwise = n :@ (replacePattern find replacement p)

replacePattern find replacement original @(Structure c ps)
| original == find = replacement
| otherwise = Structure c (map (replacePattern find replacement) ps)

expectedPatt = replacePattern (toPattern replaceSP) Anything
(toPattern expectedVal)

6It is assumed, at least for demonstration here, that you would not want to replace all
your Anything patterns.

22.2. PATTERN MATCHING XXII–9

Thus the expected value can be written as normal (using any helper functions
that may have been defined for constructing normal values), then later it can be
turned into a Pattern , manipulated by masking out particular values as Anything
patterns and finally matched against the actual test output. Note that the function
is not restricted to transforming values to Anything patterns – it can also replace
specified values with labelled patterns, or any arbitrary pattern.

22.2.5 Related Work

The lack of composition and abbreviation of Haskell’s patterns has been noted
many times in the past and several different solutions have been proposed [12, 11].

One such solution is first-class patterns [11]. First-class patterns provide
pattern-combinators for easy and powerful composition of patterns, but introduce
an elaborate mechanism for binding parts of a pattern. They do not solve the
problem of enforcing the equality of repeated labels.

A simple proposal is pattern synonyms7 – macro-substitution for patterns.
These would help to abbreviate patterns, and allow some straight-forward com-
position, but they do not provide anything beyond that.

The idea behind another solution, views, is to transform the data into a view
(by performing some computation), and then pattern match (or some analogous
operation) on this view of the data [12]. The transformations are functions and can
therefore be composed. We could define a transformation that – in our example –
extracted the temp0 and temp1 items from the data structure. We could even make
the view succeed (most view functions return a Maybe type) only when temp0 and
temp1 match.

We need a different pattern for each test. Therefore to use views for our pur-
poses, we would likely need to customise the view for each test, which would not
save much effort over writing out a whole pattern.

Unification extends pattern-matching by allowing related sub-terms (that must
match each other) and also allowing symmetric matching (the right-hand side
can be a pattern too) [3, 10]. Thus, unification subsumes the capabilities of our
approach, which by contrast is smaller and simpler.

Perhaps the closest work to our solution is the idea of a pattern logic that uses
monadic combinators [1]. The combinators allow patterns to be easily composed,
and include powerful quantifiers (∀ and ∃). They can also be used to compare
different parts of the pattern against each other when matching. While the ca-
pabilities of the pattern logic are comparable to the approach detailed here, the
practical implementation is different. In specific, programmers must define the
necessary combinators for their custom data types, whereas we take advantage of
GHC’s automatic derivation of the Data type-class. The pattern logic also lacks
the ability to easily turn normal data into its Pattern form; combinators must be
constructed independently of the data-type being matched.

7http://hackage.haskell.org/trac/haskell-prime/wiki/PatternSynonyms

XXII–10 CHAPTER 22. MATCHING AND MODIFYING WITH GENERICS

22.3 TREE NAVIGATION

In our compiler, we build a control-flow graph (CFG) while walking through the
AST. We then perform various analyses on the CFG, and often want to modify
the AST based on our analysis (for example, to remove an unused variable). This
means modifying a specific part of the AST, without any explicit unique identifier
to tell different nodes apart8. More generally, we wish to modify a particular
sub-tree that is uniquely identified solely by its location in the whole tree.

We will frame our discussion around the following example. Consider a code
fragment that selects between two assignments using an if statement:

If sp (EqualConst sp (Variable sp "x") 2)
(Assign sp [Variable sp "a"]]Variable sp "x"])
(Assign sp [Variable sp "b"] [Variable sp "y"])

The analysis would reveal (based on our control flow graph) that in the first
assignment, x is always equal to the constant 2, and thus the constant value could
be substituted in accordingly. We cannot simply replace all instances of x in the
whole AST; this would wrongly substitute for x in the condition of the if state-
ment. A constraint on our implementation is that the modifications we make to
the tree in our compiler are always inside a monad.

22.3.1 Non-Generic Approach

When we walk the tree the first time, building the control-flow graph, we should
record our position in the tree by building up a function. One can imagine this
function as being a wrapper that carries a modifier function to the correct part of
the tree. In terms of figure 22.1, we want to provide a modifier for a Variable , and
be able to apply this modifier to the root of the tree. Conceptually we want the
wrapper to traverse the arrow marked A in the diagram.

We build up the wrapper function by composing a wrapper function at each
step descending the tree, composing arrows B and C to get A. Each wrapper will
have the following type (m being the monad):

type ModifierFunc m inner outer = (inner -> m inner) -> (outer -> m outer)

The wrappers are composed using function composition (the . operator). We
build up the function as we walk the tree, storing the ModifierFunc in a state monad.
We omit the construction of the control-flow graph here in order to focus on the
modifier functions.

The tree walking functions are named recordVarUse∗. They are monadic and
use the addVarUseToState function that takes a variable and a modifier wrapper for
that variable, and stores the two in the state. Should we wish to modify a variable
later on, we can lookup its associated modifier wrapper, wrap our modifier and
apply it to the tree.

8Due to the manipulations performed by our passes, source positions are not
guaranteed to be unique.

22.3. TREE NAVIGATION XXII–11

FIGURE 22.1. Our example data shown in tree (spine) form

The recordVarUse functions are as follows:

recordVarUse (If cond thenClause elseClause) mod
= do recordVarUseCond cond (mod .

\f (If x0 e x2 x3) -> do {e’ <- f e ; return (If x0 e’ x2 x3)})
recordVarUse thenClause (mod .
\f (If x0 x1 th x3) -> do {th’ <- f th ; return (If x0 x1 th ’ x3)})

recordVarUse elseClause (mod .
\f (If x0 x1 x2 el) -> do {el’ <- f el ; return (If x0 x1 x2 el ’)})

recordVarUseCond (EqualConst lhs) mod
= addVarUseToState lhs (mod .

\f (EqualConst x0 v x2) -> do {v’ <- f v ; return (EqualConst x0 v’ x2)})

It is important that the trees returned by the functions use the x1, x2 and x3 pa-
rameters to the modifier function rather than using cond, thenClause and elseClause;
it is possible that we may modify both clauses later on, so the latter values will be
stale (unmodified) when the second modification function is called.

22.3.2 Generic Approach

The approach detailed in the previous section works, but it is clear that it is verbose
and error-prone, for example the then/else clauses might be accidentally swapped.

The approach is very formulaic; all elements are left unmodified except the
particular item of interest, which is modified by a function. The three lambda
expressions in the recordVarUse function only differ in which item (2nd/3rd/4th) is
modified, which suggests that the approach could be automated. What we would
like to write for the top recordVarUse clause is:

XXII–12 CHAPTER 22. MATCHING AND MODIFYING WITH GENERICS

recordVarUse mod (If cond thenClause elseClause)
= do recordVarUseCond cond (mod . mod2of4 If)

recordVarUse thenClause (mod . mod3of4 If)
recordVarUse elseClause (mod . mod4of4 If)

Each modNofM function modifies the appropriate argument of the given con-
structor, leaving the rest unchanged. The type of the mod2of4 function is as fol-
lows:

mod2of4 :: (Monad m, Data b, Typeable a0, Typeable a1, Typeable a2, Typeable a3)
=> (a0 -> a1 -> a2 -> a3 -> b) -> ModifierFunc m a1 b

We have to declare a number of constraints on the type of the function, mainly
to satisfy the requirements of the SYB library. Note that the main reason that we
pass the constructor (e.g. If) to the mod2of4 function is to help the type system;
we specify the four types (a0, a1, a2, a3) and which type the ModifierFunc acts on
(the second; a1).

Here is how we define mod2of4 and, for comparison, mod3of4 in terms of an-
other function, decomp4, which applies the given four monadic functions to the
four arguments of the constructor:

mod2of4 con f = decomp4 con return f return return
mod3of4 con f = decomp4 con return return f return

decomp4 :: (Monad m, Data b, Typeable a0, Typeable a1, Typeable a2, Typeable a3)
=> (a0 -> a1 -> a2 -> a3 -> b) ->

(a0 -> m a0) -> (a1 -> m a1) -> (a2 -> m a2) -> (a3 -> m a3) -> (b -> m b)

The gmapM transformation function – which is the obvious way of implement-
ing decomp4 – maps one generic function over the sub-terms. This generic func-
tion adjusts its behaviour solely according to the type of the sub-terms; if the 3rd
and 4th items have identical types, they will be processed identically. The generic
function cannot know which of the same-typed items it is operating on. The way
we solve this problem is detailed in section 22.4 – using the functions described
in that section, we can easily define decomp4:

decomp4 con f0 f1 f2 f3 x
= do when (not (constrEq con x)) (fail "Invalid tree-walk")

gmapFuncsM [mkM’ f0, mkM’ f1, mkM’ f2, mkM’ f3] x

See section 22.2.3 for an explanation of why we use a custom constrEq func-
tion rather than the equality operator. We compare the constructors before ap-
plying the functions as a sanity check; the error that we give is analogous to a
non-exhaustive pattern match error in our original non-generic approach. An er-
ror will not occur as long as the modifier function is applied to the original tree
and the sub-branches being modified are disjoint.

Our approach divorces the structure of the tree from the types involved. We
can view the tree through the spine view of SYB; a series of nodes (constructors)
with a fixed number of child nodes (the arguments to the constructors).

22.4. GENERIC PROGRAMMING BY INDEX IN SYB XXII–13

Although not very elegant, our approach is a working practical solution to our
problem. The code needed to build up wrapper types for traversing a tree is now
very small, and we did not use any pre-processing techniques or extra language
systems; our solution is entirely build on Haskell and the SYB library.

We are not aware of any technique similar to the one presented here. The idea
is similar to other work regarding customised traversals and generics [4, 8], but
that work has always focused on applying modifiers according to type, not by
position in the tree.

22.4 GENERIC PROGRAMMING BY INDEX IN SYB

Both of the solutions presented in this paper need to apply generic functions to
sub-terms where the functions differ by index, rather than by type. The SYB
library is designed to support the latter.

The first problem is that we require a list of generic queries/monadic transfor-
mations. These have the following types:

type GenericQ r = forall a . Data a => a -> r
type GenericM m = forall a . Data a => a -> m a

It is not possible in Haskell to construct a list with type [GenericQ Bool] due
to the rank-2 types involved. Therefore, to work around this problem the SYB
library supplies wrappers:

newtype GenericQ’ r = GQ { unGQ :: (GenericQ r) }
newtype GenericM’ m = GM { unGM :: (Data a => a -> m a) }

It is possible to create a list of [GenericQ’ Bool]. Lists of query/monadic trans-
formation functions given to the helper functions we now describe must be sup-
plied using these wrappers.

The first function we require is to apply a list of generic query functions to the
sub-terms of a constructor and return the list of the results. For this we can use
the gmapQi function from the SYB library that queries one specific indexed child
of a constructor.

gmapQi :: Data a => Int -> GenericQ u -> a -> u

gmapFuncsQ :: Data a => [GenericQ’ u] -> a -> [u]
gmapFuncsQ funcs x = [gmapQi n (unGQ f) x | (n, f) <- zip [0..] funcs]

We also need a similar function for monadic transformation. Since there is no
gmapMi equivalent (only gmapM), we must use a different technique. We use a
monad state transformer to record a list of modification functions. Each function
application removes the next function from the head of the list (in effect, a stack)
and applies that:

gmapM :: (Monad m, Data a) => GenericM m -> a -> m a

popAndApply :: (Monad m, Data a) => a -> StateT [GenericM’ m] m a

XXII–14 CHAPTER 22. MATCHING AND MODIFYING WITH GENERICS

popAndApply x = do (f:fs) <- get
put fs
lift ((unGM f) x)

gmapFuncsM :: (Monad m, Data a) => [GenericM’ m] -> a -> m a
gmapFuncsM funcs x = evalStateT (gmapM popAndApply x) funcs

The lift function is needed to lift the inner monadic value up into the StateT
monad. The evalStateT function executes the state monad transformer action with
the given state (funcs), and returns the result, discarding the state – which should
always be the empty list at the end.

Finally, we define a useful helper version of the mkM function, that also wraps
its return value. The mkM function turns a type-specific monadic modification into
a generic modification that applies return to all other types.

mkM’ :: (Monad m, Typeable a) => (a -> m a) -> GenericM’ m
mkM’ f = GM {unGM = mkM f}

22.5 CONCLUSIONS

This paper has detailed two interesting uses of SYB to solve practical problems
we have encountered in programming a compiler in Haskell. It is apparent that
SYB is a powerful tool that allows us to build powerful systems with all the details
neatly hidden away behind the Data type-class.

One problem with SYB is that it does not integrate well with the notion of
type-classes in Haskell. There are several points where we would like to construct
a generic function along the lines of show ‘extQ‘ gshow; that is, to use an instance
of Show wherever it is available, but to resort to the Data-based SYB function
gshow otherwise. SYB cannot express such concepts. Although the Typeable type
supports dynamic typing, it cannot dynamically reveal type-class membership –
if this is at all feasible in a Haskell implementation.

The examples in this paper have been simplified from the open-source Tock
code. We have not yet separated our generic utilities into a reusable library; if you
would be interested in using them in other projects, please contact the authors.

22.6 ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their extensive comments.
Thanks are also due to Chris Booth – without his enthusiasm for test-driven de-
velopment, this work would not have been started.

A. ABSTRACT SYNTAX TREE TYPE XXII–15

A ABSTRACT SYNTAX TREE TYPE

Throughout this paper we use the following simplified AST structure (for brevity
we have omitted the deriving clauses):

data SourcePos = SourcePos String Int Int −− filename, line number, column
data Statement = Assign SourcePos [Variable] [Variable] −− dest, source

| If SourcePos Condition Statement Statement −− then, else
| SeqBlock SourcePos [Statement]

data Variable = Variable SourcePos String
data Condition = EqualConst SourcePos Variable Int

REFERENCES

[1] O. Chitil and F. Huch. A pattern logic for prompt lazy assertions. In Implementation
and Application of Functional Languages, 18th International Workshop, IFL 2006,
LNCS 4449, pages 126–144, April 2007.

[2] R. Hinze, A. Löh, and B. C. d. S. Oliveira. “Scrap Your Boilerplate” Reloaded. In
Proceedings of the Eighth International Symposium on Functional and Logic Pro-
gramming (FLOPS 2006), 2006.

[3] P. Jansson and J. Jeuring. Functional pearl: Polytypic unification. Journal of Func-
tional Programming, 8(5):527–536, 1998.

[4] R. Lämmel. Scrap your boilerplate with XPath-like combinators. In POPL’07, Pro-
ceedings. ACM Press, Jan. 2007.

[5] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern
for generic programming. In TLDI, pages 26–37, 2003.

[6] R. Lämmel and S. Peyton Jones. Scrap more boilerplate: reflection, zips, and gener-
alised casts. In ICFP 2004, pages 244–255. ACM Press, 2004.

[7] R. Lämmel and S. Peyton Jones. Scrap your boilerplate with class: extensible generic
functions. In ICFP 2005, pages 204–215. ACM Press, Sept. 2005.

[8] D. Ren and M. Erwig. A generic recursion toolbox for haskell or: scrap your boiler-
plate systematically. In Haskell ’06: Proceedings of the 2006 ACM SIGPLAN work-
shop on Haskell, pages 13–24, New York, NY, USA, 2006. ACM Press.

[9] D. Sarkar, O. Waddell, and R. K. Dybvig. A nanopass infrastructure for compiler
education. In ICFP 2004, pages 201–212. ACM Press, 2004.

[10] T. Sheard and E. Pasalic. Two-level types and parameterized modules. Journal of
Functional Programming, 14(5):547–587, 2004.

[11] M. Tullsen. First class patterns. In PADL, pages 1–15, 2000.

[12] P. Wadler. Views: A way for pattern matching to cohabit with data abstraction. In
Proceedings, 14th Symposium on Principles of Programming Languages, pages 307–
312. ACM, 1987.

[13] P. H. Welch and F. R. M. Barnes. Communicating Mobile Processes: introducing
occam-pi. In 25 Years of CSP, volume 3525 of Lecture Notes in Computer Science,
pages 175–210. Springer Verlag, April 2005.

