
Matching and Modifying with Generics

Neil Brown and Adam Sampson

Computing Laboratory
University of Kent

UK

28 May 2008

Outline

Talk Outline

Two separate applications of “Scrap Your Boilerplate”
generic programming

1 Pattern-matching
2 Modifying large trees

Show how to make Haskell code shorter and simpler by
using generics

Background

Background

We write a compiler for concurrent languages using
Haskell
We use test-driven development (mainly using HUnit)
It is a nanopass compiler – executes many isolated
compiler transformations on a central abstract syntax tree
(AST)

The Problem

Compiler transformation

Example transformation: flatten assignments
Turn parallel assignments into multiple sequential
assignments with temporary variables
We want to test the transformation

x, y := y, x

SEQ
t := x
x := y
y := t

The Problem

Unit testing

The Problem

Compiler transformation – test input

We need to construct a fragment of AST (right) to feed into
our test, corresponding to the source code (left):

x, y := y, x

Assign (SourcePos 1 1)
[Variable (SourcePos 1 1) "x"
,Variable (SourcePos 1 1) "y"]
[Variable (SourcePos 1 1) "y"
,Variable (SourcePos 1 1) "x"]

The Problem

Compiler transformation – test input

We need to construct a fragment of AST (right) to feed into
our test, corresponding to the source code (left):

x, y := y, x

sp = SourcePos 1 1

Assign sp
[Variable sp "x"
,Variable sp "y"]
[Variable sp "y"
,Variable sp "x"]

The Problem

Compiler transformation – test input

We need to construct a fragment of AST (right) to feed into
our test, corresponding to the source code (left):

x, y := y, x

sp = SourcePos 1 1
var x = Variable sp x

Assign sp
[var "x" , var "y"]
[var "y" , var "x"]

The Problem

Compiler transformation – test input

We need to construct a fragment of AST (right) to feed into
our test, corresponding to the source code (left):

x, y := y, x

sp = SourcePos 1 1
var x = Variable sp x
swap vars = Assign sp vars (reverse vars)

swap [var "x" , var "y"]

The Problem

Constructing output – bad

Could try constructing output value to match against:

SeqBlock [Assign sp [var " t "] [var "x"],
Assign sp [var "x"] [var "y"],
Assign sp [var "y"] [var " t "]

But temporary won’t really be called " t " – name will be
generated
Don’t want to tie tests to name generation – if we change
the name generation we’d have to change all our tests!
Exact name is not important, as long as the two instances
both have the same name

The Problem

The problem – matching

Can’t check against an expected value. Must use pattern
matching:

check (SeqBlock [Assign _ [Variable _ temp0] [Variable _ "x"],
Assign _ [Variable _ "x"] [Variable _ "y"],
Assign _ [Variable _ "y"] [Variable _ temp1]])

= temp0 == temp1
check _ = False

Can’t easily shorten the pattern!

The Problem

The problem with patterns

Patterns cannot be abbreviated, nor easily composed
We can solve this using generics
Not a new language extension, just uses generics in
normal Haskell

Generics

Generic programming

A generic function is one that does different things to each
type, depending on its structure
Not to be confused with polymorphism: a polymorphic
function is one that does the same thing to whichever type
it is applied to
We were already using a generic programming technique
known as Scrap Your Boilerplate (SYB)

It is built around a type-class called Data
GHC, the Haskell compiler, can automatically derive
instances of Data

Generics

SYB basics

SYB decomposes data into its constructor and a list of
arguments:

toConstr :: Data a => a -> Constr

Pattern Data Type

Patterns as a data type

We represent patterns as a value of type Pattern:

data Pattern = Anything
| String :@ Pattern
| Structure Constr [Pattern]

Can easily convert any item into its equivalent exact
pattern (see paper)

toPattern :: Data a => a -> Pattern

Pattern Data Type

Example pattern

We want to match Variable _ "x":

Structure
(toConstr (Variable (SourcePos 1 1) ""))
[Anything,
toPattern "x"]

Pattern Data Type

Example pattern

We want to match Variable _ "x":

Structure
(toConstr (Variable undefined undefined))
[Anything,
toPattern "x"]

Pattern Data Type

Example pattern

We want to match Variable _ "x":

mVariable x y = Structure
(toConstr (Variable undefined undefined))
[toPattern x, toPattern y]

__ = Anything

mVariable __ "x"

Pattern Data Type

Converting our earlier pattern into a Pattern

check (SeqBlock [Assign _ [Variable _ temp0] [Variable _ "x"],
Assign _ [Variable _ "x"] [Variable _ "y"],
Assign _ [Variable _ "y"] [Variable _ temp1]])

= temp0 == temp1
check _ = False

Pattern-match above becomes Pattern below:

patt = mSeqBlock
[mAssign __ [mVariable __ ("temp":@__)] [mVariable __ "x"],
mAssign __ [mVariable __ "x"] [mVariable __ "y"],
mAssign __ [mVariable __ "y"] [mVariable __ ("temp":@__)]]

matchPattern patt

Pattern Data Type

Simplifying the pattern

patt = mSeqBlock
[mAssign __ [mVariable __ ("temp":@__)] [mVariable __ "x"],
mAssign __ [mVariable __ "x"] [mVariable __ "y"],
mAssign __ [mVariable __ "y"] [mVariable __ ("temp":@__)]]

matchPattern patt

Pattern Data Type

Simplifying the pattern

var x = mVariable __ x

patt = mSeqBlock
[mAssign __ [var ("temp":@__)] [var "x"],
mAssign __ [var "x"] [var "y"],
mAssign __ [var "y"] [var ("temp":@__)]]

matchPattern patt

Pattern Data Type

Simplifying the pattern

var x = mVariable __ x
lhs <:=> rhs = mAssign __ [lhs] [rhs]

patt = mSeqBlock
[var ("temp":@__) <:=> var "x",
var "x" <:=> var "y",
var "y" <:=> var ("temp":@__)]

matchPattern patt

Pattern Data Type

Simplifying the pattern

var x = mVariable __ x
lhs <:=> rhs = mAssign __ [lhs] [rhs]

patt = mSeqBlock [t <:=> x, x <:=> y, y <:=> t]
where

x = var "x"
y = var "y"
t = var "temp":@__

matchPattern patt

Pattern Data Type

Pattern matching summary

We represent patterns as normal Haskell data (with the
help of SYB)
We can manipulate these patterns

Pull out common sub-patterns to reduce duplication
Replace parts of the pattern

Code for matching a pattern against data is in the paper
Patterns are not type-safe – it is possible to create
inconsistent patterns (see paper): mVariable __ 7

Tree Modification

Modifying a tree

Tree Modification

Modifying a tree

Tree Modification

Modifying a tree

Tree Modification

Modifying a tree

Tree Modification

Identifying the right place

There are no unique
identifiers for nodes

Awkward to add them

Cannot match by
equality – we only want
to modify a particular
use of variable “x”
Only uniquely identifying
thing is the position

Tree Modification

Modifying a single node

Expression ->MyMonad Expression

Tree Modification

Modifying a tree

Tree Modification

Modifying a tree

Tree Modification

Wrapping the modifier

()

(Expression ->
MyMonad Expression)

-> (AST ->MyMonad AST)

Tree Modification

Modifying a tree

Tree Modification

Pure Haskell Solution

analyse (If _ cond thenClause elseClause) mod = do
analyseExpr cond (mod .
\f (If sp e x2 x3) -> do {e’ <- f e ; return (If sp e’ x2 x3)})

Tree Modification

Pure Haskell solution

analyse (If _ cond thenClause elseClause) mod = do
analyseExpr cond (mod .
\f (If sp e x2 x3) -> do {e’ <- f e ; return (If sp e’ x2 x3)})

analyse thenClause (mod .
\f (If sp x1 th x3) -> do {th’ <- f th ; return (If sp x1 th ’ x3)})

analyse elseClause (mod .
\f (If sp x1 x2 el) -> do {el ’ <- f el ; return (If sp x1 x2 el ’)})

analyseExpr (Equal _ lhs rhs) mod = do
analyseExpr lhs (mod .
\f (Equal sp e x2) -> do {e’ <- f e ; return (EqualConst sp e’ x2)})

analyseExpr rhs (mod .
\f (Equal sp x1 e) -> do {e’ <- f e ; return (EqualConst sp x1 e’)})

Tree Modification

Generics solution

Define decompN functions (see paper), and helper
functions:

decomp3 :: (Monad m, Data b, Typeable a0, Typeable a1, Typeable a2)
=> (a0 -> a1 -> a2 -> b) ->

(a0 -> m a0) -> (a1 -> m a1) -> (a2 -> m a2) -> (b -> m b)

mod2of3 con f = decomp3 con return f return
mod3of3 con f = decomp3 con return return f

Tree Modification

Generics solution

analyse (If _ cond thenClause elseClause) mod = do
analyseExpr cond (mod . mod2of4 If)
analyse thenClause (mod . mod3of4 If)
analyse elseClause (mod . mod4of4 If)

analyseExpr (Equal _ lhs rhs) mod = do
analyseExpr lhs (mod . mod2of3 Equal)
analyseExpr rhs (mod . mod3of3 Equal)

Tree Modification

Composing modifiers

End

Summary

Used SYB generics for two interesting applications:
1 Pattern-matching
2 Tree modification

Not type-safe, and a little ad-hoc
But: made our code shorter and more powerful
Generics are a useful tool for doing even small things that
are awkward in Haskell

End

Questions?

Extra Slides

Why can’t Pattern be parameterised?

data Pattern a = Anything
| String :@ (Pattern a)
| Structure Constr [Pattern a]

Extra Slides

Ideal QuickCheck scenario

Extra Slides

Common QuickCheck scenario

Extra Slides

Redundant QuickCheck scenario

	Outline
	Background
	The Problem
	Generics
	Pattern Data Type
	Tree Modification
	End
	Extra Slides

