Matching and Modifying with Generics

Neil Brown and Adam Sampson

Computing Laboratory
University of Kent
UK

28 May 2008

University of

Kent

A

\ ~
Computing

Talk Outline

m Two separate applications of “Scrap Your Boilerplate”
generic programming
Pattern-matching
Modifying large trees
m Show how to make Haskell code shorter and simpler by
using generics

A

University of

Kent

\ ~
Computing

Background

Background

m We write a compiler for concurrent languages using
Haskell
m We use test-driven development (mainly using HUnit)

m It is a nanopass compiler — executes many isolated
compiler transformations on a central abstract syntax tree
(AST)

A

University of

Kent

\ ~
Computing

The Problem

Compiler transformation

m Example transformation: flatten assignments

m Turn parallel assignments into multiple sequential
assignments with temporary variables

m We want to test the transformation

SEQ
t
X, ¥ 1=y, X —> .

y o

n nn
(S

A

University of

Kent

\ ~
Computing

Unit testing

Test Specification

The Problem

Input

Expected
Result

A 4

Function
to test

e ——

A 4

N

assertEqual

University of

Kent

A

\ ~
Computing

The Problem

Compiler transformation — test input

m We need to construct a fragment of AST (right) to feed into
our test, corresponding to the source code (left):

Assign (SourcePos 1 1)
[Variable (SourcePos 1 1) "x"
X, y =y, X ,Variable (SourcePos 1 1) y]
[Variable (SourcePos 1 1) "y"
,Variable (SourcePos 1 1) "x"]

,\

University of

Ken

Computmg

The Problem

Compiler transformation — test input

m We need to construct a fragment of AST (right) to feed into
our test, corresponding to the source code (left):

sp = SourcePos 1 1

Assign sp
y, X [Variable sp
,Variable sp " "]
[Variable sp "y"
, Variable sp "x"

X, y

University of

Ken

,\

Computmg

The Problem

Compiler transformation — test input

m We need to construct a fragment of AST (right) to feed into
our test, corresponding to the source code (left):

sp = SourcePos 1 1
var x = Variable sp x

Xy Y =Y, X

Assign sp

[var "x", var "y"]
[Var llyll, var IIXll

University of

Kent

A

\ ~
Computing

The Problem

Compiler transformation — test input

m We need to construct a fragment of AST (right) to feed into
our test, corresponding to the source code (left):

sp = SourcePos 1 1
var x = Variable sp x
X, y =y, X swap vars = Assign sp vars (reverse vars)

swap [var "x", var "y"]

A

University of

Kent

\ ~
Computing

The Problem

Constructing output — bad

m Could try constructing output value to match against:

SeqBlock [Assign sp [var "t"] [var "Xx"],
Assign sp [var "x"] [var "y"],
Assign sp [var "y"] [var "t"]

m But temporary won't really be called "t" — name will be
generated

m Don’t want to tie tests to name generation — if we change
the name generation we’'d have to change all our tests!

m Exact name is not important, as long as the two instances
both have the same name

,\

University of

Ken

Computmg

The Problem

The problem — matching

m Can’t check against an expected value. Must use pattern
matching:

check (SeqgBlock [Assign _ [Variable _ temp0] [Variable _ "x"
Assign _ [Variable _ "x"] [Variable _ "y"],
Assign _ [Variable _ "y"] [Variable _ temp1]])
= temp0 == temp1
check = False

m Can't easily shorten the pattern!

,\

University of

Ken

Computmg

The Problem

The problem with patterns

m Patterns cannot be abbreviated, nor easily composed
m We can solve this using generics

m Not a new language extension, just uses generics in
normal Haskell

A

University of

Kent

\ ~
Computing

Generics

Generic programming

m A generic function is one that does different things to each
type, depending on its structure

m Not to be confused with polymorphism: a polymorphic
function is one that does the same thing to whichever type
it is applied to

m We were already using a generic programming technique
known as Scrap Your Boilerplate (SYB)

m It is built around a type-class called Data
m GHC, the Haskell compiler, can automatically derive
instances of Data

A

University of

Kent

\ ~
Computing

SYB basics

SYB decomposes data into its constructor and a list of
arguments:

Variable (SourcePos 1 1) “x”

7
S
/s

\ SRANEIRN
\ \ N

Variable SourcePos 1 1 X

Constr Arguments

toConstr : : Data a => a —> Constr

University of

Kent

Generics

A

\ ~
Computing

Pattern Data Type

Patterns as a data type

m We represent patterns as a value of type Pattern:

data Pattern = Anything
| String :@ Pattern
| Structure Constr [Pattern]

m Can easily convert any item into its equivalent exact
pattern (see paper)

toPattern :: Data a => a —> Pattern

A

University of

Kent

\ ~
Computing

Pattern Data Type

Example pattern

m We want to match Variable _ "x":

Structure
(toConstr (Variable (SourcePos 1 1) ™))
[Anything,
toPattern "x"]

A

University of

Kent

\ ~
Computing

Pattern Data Type

Example pattern

m We want to match Variable _ "x":

Structure
(toConstr (Variable undefined undefined))
[Anything,
toPattern "x"]

A

University of

Kent

\ ~
Computing

Pattern Data Type

Example pattern

m We want to match Variable _ "x":

mVariable x y = Structure
(toConstr (Variable undefined undefined))
[toPattern x, toPattern y]

__ = Anything

mVariable "x"

A

University of

Kent

\ ~
Computing

Pattern Data Type

Converting our earlier pattern into a Pattern

check (SeqgBlock [Assign _ [Variable _ temp0] [Variable _ "x"],
Assign _ [Variable _ "x"] [Variable _ "y"],
Assign _ [Variable _ "y"] [Variable _ temp1]])
= temp0 == temp1
check = False

m Pattern-match above becomes Pattern below:

patt = mSeqgBlock
[mAssign __ [mVariable __ ("temp":@__)] [mVariable __ "x"],
mAssign __ [mVariable __ "x"] [mVariable __"y"],
mAssign ___ [mVariable __ "y"] [mVariable __ ("temp":@__)]]

matchPattern patt

,\

University of

Ken

Computmg

Pattern Data Type

Simplifying the pattern

patt = mSeqgBlock
[mAssign __ [mVariable __ ("temp":@__)] [mVariable __ "x"],

mAssign ___ [mVariable __ "x"] [mVariable ___ "y"],
mAssign __ [mVariable __ "y"] [mVariable __ ("temp":@_)]]
matchPattern patt
University of \

Ken

Computmg

Pattern Data Type

Simplifying the pattern

var x = mVariable __ x

patt = mSeqBlock
[mAssign __ [var ("temp":@__)] [var "x"],
mAssign __ [var "x"] [var "y"],
mAssign __ [var "y"] [var ("temp":@_)]]

matchPattern patt

A

University of

Kent

\ ~
Computing

Pattern Data Type

Simplifying the pattern

var x = mVariable __ x
Ihs <:=>rhs = mAssign __ [lhs] [rhs]

patt = mSeqgBlock
[var ("temp":@__) <:=>var "x",
var "x" <:=>var"y",
var "y" <:=>var ("temp":@__)]

matchPattern patt

A

University of

Kent

\ ~
Computing

Pattern Data Type

Simplifying the pattern

var x = mVariable __ x
Ihs <:=>rhs = mAssign __ [lhs] [rhs]

patt = mSegBlock [t <:=> X, x <:=>y,y <:=>{]

where
X =var "x"
y = Var llyll

t =var "temp":@__

matchPattern patt

University of

Kent

A

\ ~
Computing

Pattern Data Type

Pattern matching summary

m We represent patterns as normal Haskell data (with the
help of SYB)
m We can manipulate these patterns
m Pull out common sub-patterns to reduce duplication
m Replace parts of the pattern
m Code for matching a pattern against data is in the paper

m Patterns are not type-safe — it is possible to create
inconsistent patterns (see paper): mVariable __ 7

A

University of

Kent

\ ~
Computing

Tree Modification

Modifying a tree

University of

Kent

A

\ ~
Computing

Tree Modification

Modifying a tree

]
5]

Equal

Assign

L)

Assign

L)

Variable

28

sp

urnveiLy of

Kent

\ ~
Computing

Tree Modification

Modifying a tree

3 il

University of

Kent

A

\ ~
Computing

Tree Modification

Modifying a tree

mﬁﬂiﬁﬁﬁﬁgﬁé ﬁﬁﬁﬁ

University of

Kent

A

\ ~
Computing

Tree Modification

Identifying the right place

m There are no unique
identifiers for nodes

m Awkward to add them

m Cannot match by
equality — we only want
to modify a particular
use of variable “x”

m Only uniquely identifying
thing is the position

mﬁﬂéﬁﬁ%gﬁh ﬁgﬁﬁ

A

University of

Kent

\ ~
Computing

Tree Modification

Modifying a single node

Expression —>MyMonad Expression

A

University of

Kent

N
Computing

Tree Modification

Modifying a tree

A

University of

Kent

\ ~
Computing

Tree Modification

Modifying a tree

v
.

UInveidi Ly

Kent

Computmg

Tree Modification

Wrapping the modifier

(Expression —>

MyMonad Expression) — (AST —>MyMonad AST)

A

University of

Kent

N
Computing

Tree Modification

Modifying a tree

N Equal

Assign

Assign

i ®

UInveidi Ly Uf

Kent

\ ~
Computing

Tree Modification

Pure Haskell Solution

analyse (If _ cond thenClause elseClause) mod = do
analyseExpr cond (mod .
\f (If spex2x3) ->do{e’ <-f e ; return (If spe’ x2x3)})

A

University of

Kent

\ ~
Computing

Tree Modification

Pure Haskell solution

analyse (If _ cond thenClause elseClause) mod = do
analyseExpr cond (mod .
\f (If spex2x3) ->do{e’ <-f e ; return (If spe’ x2x3)})
analyse thenClause (mod .
\f (If spx1th x3) —>do {th’ <—f th ; return (If spx1th’ x3)})
analyse elseClause (mod .
\f (If spx1x2el) —>do{el’ <—f el ; return (If spx1x2 el’)})

analyseExpr (Equal _ lhs rhs) mod = do
analyseExpr Ihs (mod .
\f (Equal sp e x2) —> do {e’ <—f e ; return (EqualConst sp e’ x2)})
analyseExpr rhs (mod .
\f (Equal sp x1 e) —> do {e’ <-f e ; return (EqualConst sp x1 €’)})

University of

Kent

A

\ ~
Computing

Tree Modification

Generics solution

m Define decompN functions (see paper), and helper
functions:

decomp3 : : (Monad m, Data b, Typeable a0, Typeable a1, Typeable a2)
=> (a0 ->al —->a2 ->b) —>
(a0 => ma0) -> (a1 -=>mal) -> (a2 ->ma2) -> (b -> mb)

mod20f3 con f = decomp3 con return f return
mod30f3 con f = decomp3 con return return f

A

University of

Kent

\ ~
Computing

Tree Modification

Generics solution

analyse (If _ cond thenClause elseClause) mod = do
analyseExpr cond (mod . mod20f4 If)
analyse thenClause (mod . mod3of4 If)
analyse elseClause (mod . mod4of4 If)

analyseExpr (Equal _ Ihs rhs) mod = do
analyseExpr lhs (mod . mod20f3 Equal)
analyseExpr rhs (mod . mod30f3 Equal)

A

University of

Kent

\ ~
Computing

Tree Modification

Composing modifiers

|

If
A
mod3of3
mod2of4 I
N Ewal |

— — —

mod20f3 ~

uinver BILy ul

Kent

\ ~
Computing

Summary

m Used SYB generics for two interesting applications:

Pattern-matching
Tree modification

m Not type-safe, and a little ad-hoc
m But: made our code shorter and more powerful

m Generics are a useful tool for doing even small things that
are awkward in Haskell

A

University of

Kent

\ ~
Computing

Questions?

University of

Kent

A

\ ~
Computing

Extra Slides

Why can’t Pattern be parameterised?

data Pattern a = Anything
| String :@ (Pattern a)
| Structure Constr [Pattern a]

University of

Kent

A

\ ~
Computing

Extra Slides

Ideal QuickCheck scenario

Generate
random input

A 4

Function to test

A\ 4

Check
simple property

University of

Kent

A

\ ~
Computing

Extra Slides

Common QuickCheck scenario

input

Generate
random Function to test
input and result

expected v output
result
Check
equality

A

University of

Kent

\ ~
Computing

Extra Slides

Redundant QuickCheck scenario

Generate
random input -
input
l input
Calculate result Function to test
output
expected v
result
Check
equality
University of | ~

Kent

\ ~
Computing

	Outline
	Background
	The Problem
	Generics
	Pattern Data Type
	Tree Modification
	End
	Extra Slides

