Herding Fish
From TUNA to CoSMoS

Adam Sampson
University of Kent
Introduction

- Partly a wrap-up of TUNA
- Partly an advert for CoSMoS
- Will concentrate on simulation aspects
 - ... since that's most likely to be of interest to the people here
TUNA

• “Technology Underpinning Nanotech Assemblers”
• Two-year, £60k pilot project
• Studied the feasibility of engineering emergent behaviour in networks of nanites
Case study: haemostasis

- Artificial blood platelets
- Block wounds via an emergent behaviour:
 - Wounds emit chemical markers
 - Platelets become sticky in response
 - Platelets clump together and stick to edges of wound
Engineering emergent behaviour

• Emergent behaviour appears everywhere in nature – being able to design it would be really useful

• Break a problem down into processes that solve the problem as an emergent behaviour
 – i.e. refine emergent behaviour into simple behaviours

• But conventional refinement doesn't work...
Emergence does not refine

- No single refinement step between specification and implementation
 - Need intermediate environment
- See “Emergent properties do not refine” paper
Modelling languages

- CSP-based approaches
 - Circus (CSP with Z)
 - CSP || B (CSP with B)
- Use FDR and Probe for static analysis
- Translate into real code for implementation
 - Initially by hand
 - Investigated compiling CSP directly
Blood clotting model

• Stochastic cellular automaton
 - Lots of states!
 - Clot movement requires coordination

• Modelled and verified using CSP
 - 1D, 2D and 3D models
Evolving the model

- Added extra layer of clots above platelets
 - Synchronises platelet movement
 - Clots merge when they collide
 - Behaviour is the same, but the rules have moved layers
Evolving the model

- Environmental layer below platelets
 - Models chemical diffusion
Process-oriented programming

- Based on CSP and pi-calculus models of concurrency
- Isolated processes communicate via channels
- Everything is an agent!
Languages and toolkits

• occam-pi programming language
 – Process-oriented
 – Mobile data provides efficient, safe data sharing
 – Supports millions of concurrent processes on commodity hardware
 – Takes advantage of multi-core processors

• Also JCSP, Handel-C, C++CSP, PyCSP...
Dependency tracking

- Only recompute data when necessary
 - Process network provides dependency graph
 - Processes “sleep” when nothing is changing
Just-in-time world creation

• Maintaining empty world is expensive
• Create low level processes “just in time” in response to higher-level actions
• Allow unused processes to die
Distributing the model

• TUNA cluster
 – 40 Pentium 4 PCs with gigabit networking
 – Much cheaper than we expected!

• occam-pi provides transparent networked channels
 – Same semantics, but much higher latency
Distributing the model

- Can simply split up the existing model
- **Some links** are now very high-latency, though...

```
Node 1  Node 2  Node 3
```
Improving efficiency

- For better efficiency, make high-level processes aware of machine boundaries
- Bundle up expensive communications
Blood clotting simulation

- Using the tricks above...
- Distributed across 24 nodes of the cluster
- Can do 40,000,000+ processes (at 1.5fps)
- (Nearly!) linear speedup as more nodes are added
- Visualisation based on VTK volumetric renderer
Blood clotting demo
CoSMoS

• “Complex Systems Modelling and Simulation”
• Four-year, £1.1m project
• Inspired by TUNA, but different focus
• Started October 2007
CoSMoS aims

- Design patterns and software framework for modelling and simulating complex systems
 - Applicable to many different types of systems
 - Provide a pattern language for modelling
 - Make efficient, massively-concurrent simulation accessible to scientists from other disciplines
People involved

- **York CS/EE/Chem**: Susan Stepney, Jon Timmis, Martin Bates, Fiona Polack, Andy Tyrell
- **Kent CS**: Peter Welch, Fred Barnes
- Christopher Alexander
- Microsoft
- Celoxica
Case studies

- Plants and animals – often grid-based
 - Fungi – ideal for multi-level modelling
- Liquid crystals
 - Continuous space, detailed physics model
- Bio-inspired algorithms, such as artificial immune systems
 - Common concepts between different bio-inspired systems
Distributed continuous space

- The first work we've done for CoSMoS...
- TUNA concentrated on discrete space
- Extend approach to continuous positioning
 - ... but take advantage of the TUNA techniques
Continuous model of space

- Divide space into cell processes
- Space cells keep track of relative positions of local agents
- Hand off agents as they move between cells
Agent vision

- To see one cell in any direction, you need to ask the cells around you.
- Vision requests are forwarded between cells.
Boids

• Simple flocking rules
 – Average position
 – Average speed
 – Maintain minimum distance from others
Boids demo
Any questions?

This work supported by EPSRC grants EP/C516966/1 and EP/E049419/1

http://www.cosmos-research.org/

First workshop will be at
Communicating Process Architectures 2008
September 2008 at York