
Barrier Synchronisation for occam-pi
Frederick R.M. Barnes, Peter H. Welch and Adam T. Sampson

Abstract—This paper introduces a safe language binding
for CSP multiway events (barriers) that has been built into
occam-π (an extension of the classical occam language with
dynamic parallelism, mobile processes and mobile chan-
nels). Barriers provide a simple way for synchronising mul-
tiple processes and are the fundamental control mechanism
underlying both CSP (Communicating Sequential Processes)
and BSP (Bulk Synchronous Parallelism). The occam-π barri-
ers are more general than those of BSP (an occam-π system
can contain any number of barriers, with some processes
ignoring them and some registered with many). On the
other hand, they are also, currently, less general than those
of CSP (occam-π processes must commit to barrier synchro-
nisation — it cannot be used as part of a choice or ALT).
Structured support for resignation, a higher-level CSP de-
sign pattern, is also built into occam-π barriers. Applications
are outlined for fine-grained modelling of dynamic systems,
where the barriers are used for maintaining simulation time

and synchronising safe access to shared data between mil-
lions of processes. Implementation details and early perfor-
mance benchmarks (16 nanoseconds per process per barrier
synchronisation on a 3.2 GHz. Pentium IV) are also pre-
sented, along with some likely directions for future research.

Index Terms—concurrency, synchronisation, barriers,
occam-pi, CSP, simulation, fine-grained, dynamics, time

I. Introduction and Motivation

THIS paper describes the addition of multiway barrier
synchronisation to the KRoC [1], [2] occam-π system.

The occam-π programming language [3], [4], [5] is a modern
version of classical occam [6], including features such as
data, channel and process mobility (taken from Milner’s
π-calculus[7]), dynamic parallelism, extended rendezvous
and process priority.

Barriers are a synchronisation primitive on which par-
allel processes enroll, synchronise and resign. When a
process synchronises on a barrier, it is blocked until all
other processes enrolled on the barrier have also synchro-
nised. Once the barrier is completed, all blocked processes
are rescheduled. The semantics of barrier synchronisation
are exactly those of an event in Communicating Sequential
Processes (CSP) [8], [9]. The occam-π language binding is
safe in the sense that enrollment and resignation are auto-
matically coordinated and that a process may synchronise
on a barrier if, and only if, it is enrolled.

Barriers are used for a variety of purposes and with vary-
ing granularity in parallel programs. For example, the Bulk
Synchronous Parallelism (BSP) [10] model describes paral-
lel processes that run (mostly) independently on separate
processors, but periodically synchronise on a single global
barrier to exchange data. Such models will be supported
by the networked version of occam-π (not yet released [11]).
In this paper, we are concerned with much finer levels of
control, with processes enrolling, synchronising and resign-
ing dynamically on multiple barriers. We are particularly

F.R.M. Barnes, P.H. Welch and A.T. Sampson are members of the
Computing Laboratory, University of Kent, Canterbury, Kent, CT2
7NF, England. email: {frmb,phw,ats1}@kent.ac.uk

interested in applying these mechanisms to the design and
implementation of highly dynamic systems, where the bar-
riers may be used to maintain global and/or localised mod-
els of time and to synchronise safe access to shared data
(without the need for more expensive locking primitives).

A previous implementation of barriers in KRoC [12] pro-
vided user-defined abstract data types [13]. ‘BARRIER’
variables could be declared, explicitly flagged as shared
(through the use of compiler directives which overrode par-
allel usage checks) and operated via a number of procedure-
calls (‘initialise.barrier’, ‘synchronise.barrier’,
etc.) implemented in ETC (Extended Transputer
Code [14]) assembler. This was functional and fast, but
the programmer had to ensure that barriers were initialised
correctly, that only enrolled processes could synchronise
or resign and that barriers were not assigned or communi-
cated (the semantics of which were undefined).

In the language binding presented here, barriers are de-
clared in the same way as ordinary variables and channels.
These barriers are fixed, however — they may not be com-
municated or assigned, but may be renamed (e.g. through
parameter passing and abbreviation). Any process that de-
clares a barrier is automatically enrolled on that barrier,
and only processes enrolled on a barrier may synchronise
on it. If an enrolled process itself goes parallel, the default
semantics are that only one of its sub-processes inherits the
enrollment — this is checked at compile time. However, an
enrolled process may enroll all parallel sub-processes on its
barrier(s), by explicitly declaring this at the relevant PAR.

An enrolled process may temporarily resign from a bar-
rier — crucial for the ‘lazy’ execution of simulation pro-
cesses that have nothing to do for long periods of ‘time’ —
but its re-enrollment is automatic at the end of an explicit
RESIGN block. An enrolled process automatically resigns
from its barrier when it terminates, so that other processes
may continue to use it. The semantics of resignation are
not directly given by CSP, however they are easily mod-
elled by the instantiation of a proxy process that repeat-
edly offers to synchronise (on the resigned barrier) until
the event signalling the end of the resignation happens —
see the end of Section II (C).

Finally, we note that although these barriers are static
entities — like classical occam channels — occam-π offers
mobile channels and, so, mobile barriers are a natural and
necessary extension that will be considered in the future.

The language binding of these barriers in the KRoC
occam-π system is covered in Section II. Section III de-
scribes the implementation. Application techniques are
discussed in Section IV. Some early conclusions, including
initial performance figures, are given in Section V along
with a discussion of future work.



II. Language Binding

Barriers are declared in the same way as ordinary chan-
nel and variables, with the process following the declara-
tion automatically enrolled. For example:

BARRIER b: -- declaration of ’b’

... process(es) synchronising on ’b’

To enroll all sub-processes on a barrier, the parallel com-
position must explicitly declare this. For example:

PAR BARRIER b

P (b) -- all these

Q (b) -- sub-processes

R (b) -- are enrolled on ’b’

A replicated parallel may also enroll its sub-processes:

PAR i = 0 FOR n BARRIER b

worker (i, b) -- all enrolled on ’b’

In network diagrams, we represent a barrier as a ‘bar’,
connected to all enrolled processes. Figure 1 shows the
process network for the above ‘worker’ fragment.

worker (0) worker (1) worker (n−1)

b

Fig. 1. Barrier synchronised worker processes

Barrier synchronisation is expressed through a new SYNC

primitive. For example:

PROC worker (VAL INT id, BARRIER x)

SEQ

... computation

SYNC x

... more computation

:

The execution of the above SYNC line blocks until all
other processes enrolled on the barrier similarly SYNC.

Note that if a process has a barrier parameter, any invo-
cation must have passed a barrier argument on which the
invoking process was enrolled. Hence, we (and the com-
piler) may assume that the code body of the process with
a barrier parameter is enrolled on the barrier and that it
is legal to synchronise.

An enrolled process that goes parallel in the normal way
(i.e. without explicitly referencing its barrier) passes its
enrollment to only one of its sub-processes. For example:

PROC worker (VAL INT id, BARRIER x)

PAR

A () -- not enrolled

B (x) -- enrolled on ’x’

C () -- not enrolled

:

For a normal non-enrolling PAR such as this, exactly
which of its sub-processes takes the enrollment does not
matter. The compiler checks that only one does though.

An enrolled process may temporarily resign from a bar-
rier through the use of a RESIGN-block. For example:

PROC worker (VAL INT id, BARRIER x)

SEQ

P (x) -- enrolled on ’x’

RESIGN x

A () -- not enrolled on ’x’

R (x) -- enrolled on ’x’

:

Whilst executing process ‘P(x)’, this ‘worker’ must syn-
chronise on the barrier (or it will block other enrolled pro-
cesses that are synchronising). However, whilst executing
the RESIGN-block ‘A()’, it plays no part in the barrier and
other enrolled processes can synchronise amongst them-
selves freely. After the RESIGN-block, it is back in the
barrier.

Note that some care must be taken to avoid non-
determinism after exit from a RESIGN-block, since the pre-
cise time of that exit and consequent re-enrollment in the
barrier is scheduling dependent. This is considered further
in Section II.C below.

A. Barrier usage rules

Process enrollment on a barrier is determined by the
scope of its declaration, PAR BARRIER compositions and
RESIGN blocks. The following usage rules for barriers are
enforced by compiler checks:

• a process may only SYNC on a barrier to which it is
enrolled;

• when resigned from a barrier, a process may not make
any reference to that barrier (e.g. to pass it on as an
argument to a procedure);

• only one parallel sub-process of a non-enrolling PAR

may refer to a barrier enrolled at the start of the PAR

(e.g. to SYNC on it or pass it to a procedure).
• an individual barrier may be passed to only one pa-

rameter of a PROC. Strict anti-aliasing laws apply: dif-
ferent barrier names always refer to different barriers.

The following shows an illegal fragment of occam-π code,
that attempts to use a barrier in parallel without extension:

PAR BARRIER b

SYNC b

PAR

P (b) -- error: only one of these

Q (b) -- sub-processes may use ’b’

The compiler will report a suitable error message, in-
dicating that the inner PAR uses ‘b’ in parallel without
extending it.

B. Multiple barriers

We may enroll multiple barriers in the same PAR con-
struct. In the following example, the ‘timer’ processes
controls the timing of ‘process.a’ and ‘process.b’ by
synchronising on their respective barriers regularly (at
‘long’ or ‘short’ time intervals). Processes ‘process.a’
and ‘process.b’ (which may resign from either or both



time-slicing controls from time to time) also use a private
barrier, ‘b’, to synchronise between themselves:

BARRIER long, short:

PAR BARRIER long, short

PAR

long.timer (long)

short.timer (short)

BARRIER b:

PAR BARRIER b, long, short

process.a (long, short, b)

process.b (long, short, b)

C. Deadlock

The use of barriers in occam-π programs introduces new
opportunity for deadlock, caused by incorrect process syn-
chronisation. Consider the processes:

PAR BARRIER a, b

SEQ

SYNC a

SYNC b

SEQ

SYNC b

SYNC a

PAR BARRIER a, b

SEQ

SYNC a

SYNC b

SEQ

SYNC a

SYNC b

The system on the left, above, deadlocks immediately.
Its first process initially offers the ‘a’ event and refuses ‘b’.
Its second process does the reverse. This is equivalent to
STOP. The system on the right synchronises smoothly and
terminates — it is equivalent to SKIP.

Such deadlocks are fairly obvious, however! A more sub-
tle problem can arise through careless use of RESIGN blocks:

PROC always (BARRIER a, b)

WHILE TRUE

SEQ

SYNC a

... phase A compute (no SYNCs)

SYNC b

... phase B compute (no SYNCs)

:

PROC sometimes (BARRIER a, b)

WHILE TRUE

SEQ

SYNC a

... phase A compute (no SYNCs)

SYNC b

... phase B compute (no SYNCs)

IF

... decide on a hoiliday

RESIGN a, b

... enjoy holiday (e.g. sleep)

TRUE

SKIP

:

PAR BARRIER a, b

always (a, b)

sometimes (a, b)

So long as ‘sometimes’ stays enrolled in its barriers, all
goes well — ‘sometimes’ and ‘always’ will continue their
respective phased computations in parallel, keeping in step
with each other as each phase ends.

If ‘sometimes’ decides to go on holiday, it resigns from
its barriers and does other things (like sleep), leaving
‘always’ to continue on its own — all is still well.

The problem arises if ‘sometimes’ decides to come back.
When it exits its RESIGN block, it re-enrolls on its barriers
and waits to SYNC on ‘a’. If ‘always’ is in its phase B when
this happens, we are lucky and the two processes resume
in perfect synchronisation. But if ‘always’ is in phase A,
its next SYNC is on ‘b’ and the system will deadlock.

To do this safely, ‘sometimes’ must coordinate its return
with ‘always’. One way to do this is for ‘sometimes’ to
request permission from ‘always’ to return to their joint
computations. It must do this before exiting its RESIGN

block. The ‘always’ process only grants this permission
in its phase B and, then, waits for confirmation from
‘sometimes’ that it has re-enrolled (i.e. has left its RESIGN
block).

This behaviour is easy to manage by signalling and
polling over standard channels:

PROC sometimes (BARRIER a, b, CHAN BOOL sig!)

WHILE TRUE

SEQ

SYNC a

... phase A compute (no SYNCs)

SYNC b

... phase B compute (no SYNCs)

IF

... decide on a hoiliday

SEQ

RESIGN a, b

SEQ

... enjoy holiday

sig ! TRUE -- request

sig ! TRUE -- confirm

TRUE

SKIP

:

PROC always (BARRIER a, b, CHAN BOOL sig?)

WHILE TRUE

SEQ

SYNC a

... phase A compute (no SYNCs)

SYNC b

... phase B compute (no SYNCs)

PRI ALT

BOOL any:

sig ? any -- grant comeback

sig ? any -- wait for confirm

SKIP

SKIP

:

and where the system is now:



CHAN BOOL sig:

PAR BARRIER a, b

always (a, b, sig?)

sometimes (a, b, sig!)

In a larger system, there may be many processes, like
‘sometimes’, that retire from the computation from time
to time. Examples arise in large scale simulations of dy-
namic systems, where not all processes need to be continu-
ally active (because nothing is changing in their neighbour-
hood) but need to rejoin some barrier synchronisation (e.g.
for managing simulation ‘time’) when something happens
close to them.

In such cases, the above comeback/confirm protocol is
needed between each resigning process and just one spe-
cialised process, like the above ‘always’, that is always cy-
cling and synchronising (and which need do nothing else).
Separate comeback and confirm channels will be needed,
SHARED at the resigning process ends.

Finally, we note that a process enrolled in some barri-
ers may terminate, at any time, without deadlocking other
enrolled processes that remain. As mentioned in Section I,
a terminating process automatically resigns from any bar-
riers on which it is enrolled. This is neatly illustrated by
the following examples, which demonstrate that the SKIP

is a unit of all occam-π versions of the PAR operator:

PAR = PAR BARRIER b = P (b)

P (b) P (b)

SKIP SKIP

In the first system, ‘b’ must be a global barrier and SKIP

is not enrolled. Hence, SKIP’s existence and termination
have no impact on the continuing operation of ‘P(b)’.

In the second system, SKIP is enrolled on ‘b’. If ‘P(b)’
synchronises on ‘b’ before SKIP terminates, it simply blocks
until SKIP does terminate (which is the first and only thing
it ever does). But termination is atomic with resignation
from the barrier, allowing ‘P(b)’ to proceed. If SKIP ter-
minates before any synchronisations from ‘P(b)’, it has
resigned from the barrier and future synchronisations will
not be blocked. Either way, the SKIP has no impact and
we are left with ‘P(b)’.

The resignation from barriers of terminating processes
is not directly given by standard CSP, but it is easy to
model. Details will be presented in a later paper.

III. Implementation

The implementation of occam-π barriers follows the
structures and logic described in [12]. Memory over-
heads are particularly lightweight, requiring only 4 words
of memory for the barrier data-structure. This structure
comprises of a count of the number of enrolled processes,
the number of yet-to-SYNC processes, and two queue-
pointers holding the list of processes that are blocked
trying-to-SYNC. When the last process tries to SYNC, the
blocked process queue is simply appended to the run queue
— a unit time operation, regardless of the number of pro-
cesses being released.

The implementation is assisted by four new ETC (Ex-
tended Transputer Code [14]) instructions:

• initialise a barrier (with no enrolled processes).
• enroll n processes on a barrier.
• resign n processes from a barrier, that may cause a

reschedule if the barrier is completed.
• synchronise on the barrier, that may cause a resched-

ule if the barrier is completed.

The ETC to native-code translator in KRoC generates
single blocks of in-line target assembly for each of these
instructions.

The code generated by the compiler for handling barriers
is simple. When a new barrier comes into scope, it is ini-
tialised. When a barrier-enrolling PAR with n sub-processes
is entered, a further n−1 sub-processes are enrolled — the
process executing this construct must already be enrolled
on the barrier and takes over one of its sub-processes.

When each barrier-enrolling PAR sub-process terminates,
it is resigned from the barrier. An exception is made for
the last sub-process that terminates and it is not resigned.
So, the number of processes enrolled on the barrier before
and after a barrier-enrolling PAR remains the same.

An ordinary PAR construct entered by a barrier enrolled
process requires no special code generation — only the
compiler checks on correct useage (i.e. that at most one
sub-process synchronises on the barrier).

When entering a RESIGN block, the compiler generates
code to resign the process from the barrier (which could
result in barrier completion). When the resign block com-
pletes, the process is re-enrolled.

Note: no information about the actual processes enrolled
is held in the barrier data structure — only how many
there are. Compiler usage checks ensure that only enrolled
processes may synchronise or resign — hence, no run-time
checks are needed to ensure safety.

Currently, no consideration is given to process prior-
ity [5], although this could be added with relative ease.
A design constraint, therefore, is that all processes syn-
chronising on a barrier must have the same priority. This
restriction permits a very efficient implementation, the per-
formance of which is examined in Section V.

Efficiency is further traded for some flexibility in the
current implementation. Barrier synchronisations may not
be used as guards in a choice (ALT). It would be fairly easy
to allow just one of the enrolled processes to ALT on the
barrier, with only a slight loss in efficiency. Allowing all
enrolled processes to ALT on the barrier, however, requires
a referee process and a two phase commit protocol [15],
[16]. This is expensive — compared to committed barrier
synchronisation — and is left for later consideration.

IV. Barriers for shared data and time

Shared data is not normally allowed between parallel
processes in occam-π. However, in the interests of sim-
plicity and performance, there are circumstances when it
makes sense. Access to such shared data must be strictly
coordinated to avoid race hazards. Barriers provide a



highly efficient way to do this but, for now, responsibil-
ity for correct management lies with the programmer.

This section presents a design-rule for one way of cor-
rect management that is applicable to fine-grained parallel
simulations of dynamic systems. The sharing of data must
follow a regular pattern and be strictly CREW: either mul-
tiple processes are reading some shared data (Concurrent
Read), or a single process is modifying it (Exclusive Write).

A user-defined ‘CREW’ abstract data type, providing ef-
ficient and correct locking procedures suitable for arbi-
trary patterns of use, has been available in occam-π [12]
for some time. However, barriers are substantially simpler
and faster than these general CREW locks and are, there-
fore, to be preferred when the usage pattern is regular.

In this paper, we are concerned with processes shar-
ing data in a same-memory environment. As we know
from BSP models for parallel computing, barriers are an
excellent means for coordinating regular distributed com-
putations. Distributed shared memory requires additional
care for efficient management (e.g. PastSet [17] and numer-
ous implementations of BSP). Extending occam-π barriers
across distributed systems is deferred for later work.

A. Visualisation and termination of a cellular automaton

As an example of how barriers can be used both to pro-
tect shared data and maintain simulation time, Figure 2
shows a system consisting of a pipeline of ‘cell’ processes
and a single ‘display’ process. Every simulation time unit,
the cells update their own parts of some externally visi-
ble ‘state’ — with the display process safely observing and
rendering it for visualisation. The cells and display process
also share a boolean ‘ok’ flag, used to signal termination.

cellcellcell

display

state ok b

(screen)

0

0 0
01

1 1

1
0

Fig. 2. Shared data for visualisation

CREW rules require that while one or more processes are
reading shared data (e.g. cell states by the display, the ‘ok’
flag by the cells), no process is writing to that shared data
(i.e. cell states by the cells, the ‘ok’ flag by the display).
Also, of course, no writes to the same piece of shared data
may take place at the same time.

These rules are enforced by dividing the execution cycle
of the cell and display processes into two phases, with bar-
rier synchronisation implementing the division. Figure 2
extends the symbology of Figure 1. The shaded rounded
boxes represent state variables, shared by the cell and dis-
play processes. They are stuck on the barrier, b, to indicate
that access to them is controlled through the barrier. The
dotted arrows between the processes and the shared vari-

ables indicate two things: reading or writing (depending on
the arrow direction) and that the processes must synchro-
nise on the underlying barrier to coordinate that reading
or writing. The numbers annotating the read/write arrows
indicate the phases in which the reading or writing takes
place.

To check CREW conformance, we just have to check
that no read/write or write/write on shared state happens
in the same phase. In this system, that is trivial, since
reads only happen in phase 0 and writes in phase 1. [Note:
The parallel writes to ‘state’, happening in phase 1, are to
separate parts of that ‘state’.]

The code outline for the overall network in Figure 2,
assuming some constant ‘n.cells’ is:

... declare inter-cell channels

[n.cells]FOO state: -- ‘visible’ cell state

#PRAGMA SHARED state -- allow parallel sharing

BOOL ok: -- termination flag

#PRAGMA SHARED ok -- allow parallel sharing

SEQ

... initialise ’state’ and ’ok’

BARRIER b:

PAR BARRIER b

PAR i = 0 FOR n.cells BARRIER b

cell (b, state[i], ok, ...)

display (b, state, ok, ...)

The code outline for the individual ‘cell’ processes is:

PROC cell (BARRIER b, FOO s, BOOL ok, ...)

... declare and initialise local state

WHILE ok -- phase 0

SEQ

... interact with neighbours

... and update local state

SYNC b

-- phase 1

... update ’s’ (from local state)

SYNC b

:

The code outline for the ‘display’ process is:

PROC display (BARRIER b, []FOO s, BOOL ok, ...)

... declare and initialise local state

WHILE ok -- phase 0

SEQ

... render observed cell states ’s’

SYNC b

-- phase 1

... if time to stop, set ’ok’ false

SYNC b

:

Reading the ‘ok’ flag by the ‘cell’ and ‘display’ pro-
cesses happens in phase 0. In phase 1, the ‘display’ pro-
cess may decide to set the ‘ok’ flag to false. If that happens,
all processes will see the modified flag in the same cycle and
gracefully terminate together.



Rendering of the visible cell states, by ‘display’, also
happens in phase 0. Update of the visible cell states, by
the ‘cell’ processes happens in phase 1.

b b bb

display

cells W(s[i])

R(s) R(s)

b b
time

W(s[i])

R(s)

R(ok)R(ok)

R(ok)
W(ok)

R(ok)
W(ok)

R(ok)

R(ok)

0 1 0 1 0

Fig. 3. Timeline of shared data access

Figure 3 shows the timeline of read and write operations
performed by the various processes. This shows that access
to the shared data adheres to the CREW rules.

Only two phases are used in this example — more com-
plex systems may require more phases and coordination by
more than one barrier. Providing that each phase, indi-
vidually, has a parallel access pattern to shared data that
sticks to CREW rules, the system has no race hazards.
Such analysis (or, preferably, design) has O(n) complexity,
where n is the number of different processes, and scales to
very large and complex systems.

B. Language binding

The mechanism for synchronising access to shared data
described above suffers from two difficulties:

• the compiler does not police the phased CREW access
to shared data, making correct usage the responsibil-
ity of the programmer;

• implementations must be careful about local caching
of the shared data.

On the first point, for correct policing of the CREW
rules for each phase, the compiler would first need to de-
tect that this concurrency paradigm was being used and,
so, needed policing. A special language binding would help.
Subsequent analysis might be eased by requiring the use
of different barriers between each phase transitions (which
has no run-time cost). Compiled usage information for
processes could be extended to include read/write descrip-
tions for the various items of shared data and the phases
to which those descriptions apply. For separately compiled
processes, this information would be included in the com-
piler output.

The second point requires a little more consideration.
occam-π processes that have write access to data (e.g. the
shared ‘ok’ parameter for the ‘cell’ process), normally
expect that data to be exclusive to them — i.e. that the
CREW rules are honoured at process level granularity. It is
possible that on some architectures, the value of ‘ok’ would
be read once and stored in a processor register, with all
subsequent reads (and writes in the display process) only
affecting the register.

Fortunately, current implementations of occam-π (even
with optimisations set at maximum levels) guarantee that
this will not happen. No state is retained in processor
registers across descheduling points, which now includes

both SYNC and RESIGN. However, this may not necessarily
be the case in the future.

Two different ways of handling this have been consid-
ered. Firstly, the compiler could generate hints about
volatile data, allowing such to be flushed explicitly before a
SYNC or RESIGN. This may become messy and complicates
code generation. A second solution, which we are more
likely to adopt, involves changing the nature of the shared
data, such that reads and writes are forced to complete
with respect to SYNC and RESIGN operations. This type of
behaviour is already present in occam-π — port input and
output, normally used for low-level hardware access. The
existing language and compiler support for PORTs could be
extended slightly to allow:

[n.cells]PORT FOO state: -- ‘visible’ cell

PORT BOOL ok: -- termination flag

These PORTs are meant to be shared — so no compiler
directives are needed to say this. The ‘state’ and ‘ok’
ports would need slightly modified ‘cell’ and ‘display’
processes:

PROC cell (BARRIER b,

PORT FOO s!, PORT BOOL ok?, ...)

... declare and initialise local state

BOOL running:

SEQ

ok ? running

WHILE running -- phase 0

SEQ

... interact with neighbours

... and update local state

SYNC b

-- phase 1

... "s ! from.local.state"

SYNC b

-- phase 0

ok ? running

:

Note that the PORT parameters also include direction
specifiers (!, ?), explicitly declaring whether the shared
data is read or written (or both) by a process.

The implementation of PORT inputs and outputs is trivial
— simply memory reads and writes (with no synchronisa-
tion or locking required). CREW rules still must be ap-
plied and their safe operation is controlled by the barriers.
Explicitly tagging the shared data as PORTs ensures that
future code-generators will not cache their values in regis-
ters beyond another input or output from the same PORT.
The extra cost of such an implementation would be min-
imal. Local variables, such as ‘running’, could be cached
in registers safely.

V. Performance, Conclusions and Future Work

Figure 4 shows the results of a benchmark that measures
the time per barrier SYNC for increasing numbers of con-
current processes, run on 3.2 GHz. Pentium IV machines.
Each process synchronises a fixed number of times, from



which the average individual synchronisation time is calcu-
lated. The stride is used to control the start-up (and sub-
sequent scheduling) order of parallel sub-processes, demon-
strating the effect of the processor’s cache pre-fetching.

 0

 50

 100

 150

 200

 250

16M1M64k4k256161

sy
nc

 ti
m

e 
pe

r 
pr

oc
es

s 
(n

s)

number of processes

1
4

16
1024

16384
65536

random

Fig. 4. Synchronisation time for different strides

The memory foot-print for the 16 million process bench-
mark (actually 224) was just over 700 mega-bytes (approxi-
mately 44 bytes per process), so cache-misses will be heavy.
The processes are allocated their workspaces contiguously
according to their index. The stride forces their schedul-
ing so that their workspaces are (44*stride) bytes apart.
For small strides, the Pentium IV cache pre-fetching elim-
inates the problem of cache miss. For larger strides, and
especially for the randomised striding, the pre-fetching is
defeated and cache miss penalties are felt.

Despite this, Figure 4 shows the implementation to be
ultra-lightweight. The time for a sixteen-million-wide bar-
rier synchronisation was only 16 ns per process in the best
case (163 ms for the whole barrier) and 247 ns per pro-
cess in the worst case. Typical application mixes will show
some coherence in memory useage — the worst case above
is really cruel! Also, applications running real processes
(with real work to do) will not be able to afford more than
the order of a million of them (because of memory limita-
tions with current technology).

The barrier mechanisms presented in this paper are use-
ful and fast. An important area for future research con-
cerns the automated checking of shared variables whose
access is made safe using barriers. Having the compiler
guarantee the integrity of the design would relieve the de-
signer of a certain amount of stress.

CSP allows any event to be used as a guard in a choice,
including those bound to multiple parallel processes. Di-
rect implementation in occam-π requires SYNC guards for
use in ALTs. We know how to do this ([15], [16]), but will
need to take care that the required protocols for correct
execution are only set up when needed. Those protocols
are not especially heavy — except when compared with our
implementation of committed (i.e. non-ALTing) barriers.

The current implementation does not respect process
priority. It is a design constraint that processes synchronis-
ing on a barrier must all have the same priority level. This
is currently unchecked, but run-time checks could easily be
added (costing around 2 nanoseconds). Multi-priority bar-
riers are possible, but require more internal storage (for
32 process-queues instead of the current 1) and a larger
constant cost for barrier completion.

The description of barriers given here are static — they
may not be communicated or assigned. We will want to use
barriers in more volatile applications (e.g. for synchronising
dynamically constructed mobile processes in some dynamic
space-matrix [3]). We are currently investigating ideas for
MOBILE BARRIERs that will give us this capability.

Future work also includes research into a formal CSP
model for all barrier mechanisms in occam-pi. This will
allow formal reasoning for the specification, refinement and
verification of our systems, plus the use of the existing CSP
model checker (FDR[18]).

References

[1] P. Welch and D. Wood, “The Kent Retargetable occam Com-
piler,” in Proceedings of WoTUG 19. IOS Press, Mar. 1996,
pp. 143–166, ISBN: 90-5199-261-0.

[2] P. Welch, J. Moores, F. Barnes, and D. Wood, “The KRoC
Home Page,” 2000, available at: http://www.cs.kent.ac.uk/
projects/ofa/kroc/.

[3] P. Welch and F. Barnes, “Communicating mobile processes: in-
troducing occam-pi,” in 25 Years of CSP, ser. Lecture Notes in
Computer Science, A. Abdallah, C. Jones, and J. Sanders, Eds.,
vol. 3525. Springer Verlag, Apr. 2005, pp. 175–210, to appear.

[4] F. R. Barnes, “Dynamics and Pragmatics for High Performance
Concurrency,” Ph.D. dissertation, University of Kent, June
2003.

[5] F. Barnes and P. Welch, “Prioritised dynamic communicating
and mobile processes,” IEE Proceedings – Software, vol. 150,
no. 2, pp. 121–136, Apr. 2003.

[6] Inmos Limited, “occam 2.1 Reference Manual,” Inmos Limited,
Tech. Rep., May 1995, available at: http://wotug.org/occam/.

[7] R. Milner, Communicating and Mobile Systems: the Pi-
Calculus. Cambridge University Press, 1999, ISBN-10:
0521658691, ISBN-13: 9780521658690.

[8] C. Hoare, Communicating Sequential Processes. London:
Prentice-Hall, 1985, ISBN: 0-13-153271-5.

[9] A. Roscoe, The Theory and Practice of Concurrency. Prentice
Hall, 1997, ISBN: 0-13-674409-5.

[10] L. Valiant, “A bridging model for parallel computation,” Com-
munications of the ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[11] M. Schweigler, “Adding Mobility to Networked Channel-Types,”
in Proceedings of Communicating Process Architectures 2004,
Sept. 2004, pp. 107–126, ISBN: 1-58603-458-8.

[12] P. H. Welch and D. C. Wood, “Higher Levels of Process Syn-
chronisation,” in Proceedings of WoTUG 20. IOS Press, Apr.
1997, pp. 104–129, ISBN: 90-5199-336-6.

[13] D. Wood and J. Moores, “User-Defined Data Types and Opera-
tors in occam,” in Proceedings of WoTUG 22. IOS Press, April
1999, pp. 121–146, ISBN: 90-5199-480-X.

[14] M. Poole, “Extended Transputer Code - a Target-Independent
Representation of Parallel Programs,” in Proceedings of
WoTUG 21. IOS Press, Apr. 1998, pp. 187–198, ISBN: 90-
5199-391-9.

[15] P. Welch, “ALTing on a barrier synchronisation,” Private com-
munication, Mar. 2003.

[16] J. Woodcock and A. McEwan, “On choice and multiway syn-
chronisation,” Private communication, Mar. 2004.

[17] B. Vinter, O. J. Anshus, and T. Larsen, “Pastset: A distributed
structured shared memory system,” in Proceedings of High Per-
formance Computers and Networking Europe, Amsterdam, The
Netherlands, Apr. 1999.

[18] FDR2 User Manual, Formal Systems (Europe) Ltd., 3, Alfred
Street, Oxford. OX1 4EH, UK., May 2000.


