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Concurrent programming

● Design and implement software in terms of 
concurrent activities and how they interact

– Uses include: network servers, robotic control 
systems, multiplayer games, media processing...



Concurrent programming

● Activities are “lightweight threads”, with
their own state and flow of control

● Modelling entities as concurrent activities means 
they can behave and develop independently

– No artificial ordering on interactions

– A heterogeneous system, not a homogenised soup



From concurrency to parallelism

● The runtime system schedules activities 
automatically across the available processors

– … so it exploits the natural concurrency of the 
system you're modelling to execute in parallel

● Modern concurrent runtime systems – Intel's 
TBB, the GHC Haskell runtime, CCSP... – have 
low activity overheads and excellent scalability



Smart scheduling

● Scheduling is done while the program is running
– More information available: better decisions

● Dynamic load-balancing
– Work stealing finds jobs for idle CPUs

● Informed by interactions between the activities
– Minimises contention, and improves locality



Distributed simulation

● Making the interactions explicit considerably 
simplifies distributing a problem across a cluster 
of machines

– Scalable techniques, minimising latency effects



Playing games with space

● Spatial interaction is key to our applications
– Needs to be dynamic, accurate and fast

● We use tricks developed for real-time
collision detection in computer games



Where next?

● In use on a variety of projects (immunology, cell 
signalling, electricity networks...) using CoSMoS 
design patterns

● This summer: cell physics, blood clotting
● Longer-term: cancer modelling in CRISP

– … where spatial interaction and heterogeneity are 
also major concerns

● Tools: developing more appropriate interaction 
mechanisms for simulations – and making the 
runtime system space-aware



The march of time: 2006, one machine2006, one machine



2006, 18 machines



2011, one machine
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Thanks to...

● CoSMoS (EPSRC)
www.cosmos-research.org
esp. Paul Andrews,
Carl Ritson, Peter Welch

● CRISP (SICSA)
esp. Jim Bown, Alexey Goltsov,
Mark Shovman

Any questions?
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