
Informing coarse-graining
through concurrency

Adam Sampson and Jim Bown
White Space Research
University of Abertay Dundee





cell
measure, 

model



cell cell

cell cell

cell

cell

cell cell cell

cell cell

cell cell

cell

cell

cell cell cell

cell cell

cell cell

cell

cell

cell cell cell

cell cell cell

cell cell cell

cell
measure, 

model
replicate

cell cell

cell cell

cell

cell

cell cell cell

cell cell

cell cell

cell

cell

cell cell cell

cell cell

cell cell

cell

cell

cell cell cell

cell cell cell

cell cell cell



cell cell

cell cell

cell

cell

cell cell cell

cell cell

cell cell

cell

cell

cell cell cell

cell cell

cell cell

cell

cell

cell cell cell

cell cell cell

cell cell cell

cell
measure, 

model
replicate

cell cell

cell cell

cell

cell

cell cell cell

cell cell

cell cell

cell

cell

cell cell cell

cell cell

cell cell

cell

cell

cell cell cell

cell cell cell

cell cell cell

not practical:
insufficient

computational
resources



cell
measure, 

model



cell
measure, 

model

region

co
ar

se
-g

ra
in,

sim
pli

fy



region

cell
measure, 

model

co
ar

se
-g

ra
in,

sim
pli

fy

discard
emergent

properties?



region

cell
measure, 

model
cell cell

cell cell

replicate

cell

cell

cell cell cell

co
ar

se
-g

ra
in,

sim
pli

fy



region

cell
measure, 

model
cell cell

cell cell

cell

cell

cell cell cell

validate

co
ar

se
-g

ra
in,

sim
pli

fy

replicate



region

cell
measure, 

model
cell cell

cell cell

cell

cell

cell cell cell

validate

co
ar

se
-g

ra
in,

sim
pli

fy

replicate
greatest
practical
scale



region

cell
measure, 

model
cell cell

cell cell

cell

cell

cell cell cell

validate

co
ar

se
-g

ra
in,

sim
pli

fy

replicate,

parallelise

greatest
practical
scale



















Concurrent programming

● Design and implement software in terms of 
concurrent activities and how they interact

– Uses include: network servers, robotic control 
systems, multiplayer games, media processing...



Concurrent programming

● Activities are “lightweight threads”, with
their own state and flow of control

● Modelling entities as concurrent activities means 
they can behave and develop independently

– No artificial ordering on interactions

– A heterogeneous system, not a homogenised soup



From concurrency to parallelism

● The runtime system schedules activities 
automatically across the available processors

– … so it exploits the natural concurrency of the 
system you're modelling to execute in parallel

● Modern concurrent runtime systems – Intel's 
TBB, the GHC Haskell runtime, CCSP... – have 
low activity overheads and excellent scalability



Smart scheduling

● Scheduling is done while the program is running
– More information available: better decisions

● Dynamic load-balancing
– Work stealing finds jobs for idle CPUs

● Informed by interactions between the activities
– Minimises contention, and improves locality



Distributed simulation

● Making the interactions explicit considerably 
simplifies distributing a problem across a cluster 
of machines

– Scalable techniques, minimising latency effects



Playing games with space

● Spatial interaction is key to our applications
– Needs to be dynamic, accurate and fast

● We use tricks developed for real-time
collision detection in computer games



Where next?

● In use on a variety of projects (immunology, cell 
signalling, electricity networks...) using CoSMoS 
design patterns

● This summer: cell physics, blood clotting
● Longer-term: cancer modelling in CRISP

– … where spatial interaction and heterogeneity are 
also major concerns

● Tools: developing more appropriate interaction 
mechanisms for simulations – and making the 
runtime system space-aware



The march of time: 2006, one machine2006, one machine



2006, 18 machines



2011, one machine



region



region region

region region

parallelise
region



Thanks to...

● CoSMoS (EPSRC)
www.cosmos-research.org
esp. Paul Andrews,
Carl Ritson, Peter Welch

● CRISP (SICSA)
esp. Jim Bown, Alexey Goltsov,
Mark Shovman

Any questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

