# Informing coarse-graining through concurrency

Adam Sampson and Jim Bown White Space Research University of Abertay Dundee

> Abertay University





|  | cell | cell | cell | cell | cell |  |
|--|------|------|------|------|------|--|
|  | cell | cell | cell | cell | cell |  |
|  | cell | cell | cell | cell | cell |  |
|  | cell | cell | cell | cell | cell |  |
|  | cell | cell | cell | cell | cell |  |
|  | cell | cell | cell | cell | cell |  |
|  | cell | cell | cell | cell | cell |  |
|  | cell | cell | cell | cell | cell |  |
|  | cell | cell | cell | cell | cell |  |
|  | cell | cell | cell | cell | cell |  |
|  | cell | cell | cell | cell | cell |  |



































#### Concurrent programming

- Design and implement software in terms of concurrent activities and how they interact
  - Uses include: network servers, robotic control systems, multiplayer games, media processing...



#### Concurrent programming

- Activities are "lightweight threads", with their own state and flow of control
- Modelling entities as concurrent activities means they can behave and develop independently
  - No artificial ordering on interactions
  - A heterogeneous system, not a homogenised soup



#### From concurrency to parallelism

• The **runtime system** schedules activities automatically across the available processors

 - ... so it exploits the natural concurrency of the system you're modelling to execute in parallel

 Modern concurrent runtime systems – Intel's TBB, the GHC Haskell runtime, CCSP... – have low activity overheads and excellent scalability







## Smart scheduling

- Scheduling is done while the program is running
  - More information available: better decisions
- Dynamic load-balancing
  - Work stealing finds jobs for idle CPUs
- Informed by interactions between the activities
  - Minimises contention, and improves locality



#### Distributed simulation

- Making the interactions explicit considerably simplifies distributing a problem across a cluster of machines
  - Scalable techniques, minimising latency effects



## Playing games with space

- Spatial interaction is key to our applications
  - Needs to be dynamic, accurate and fast
- We use tricks developed for real-time **collision detection** in computer games



#### Where next?

- In use on a variety of projects (immunology, cell signalling, electricity networks...) using CoSMoS design patterns
- This summer: cell physics, blood clotting
- Longer-term: cancer modelling in CRISP
  - ... where spatial interaction and heterogeneity are also major concerns
- **Tools**: developing more appropriate interaction mechanisms for simulations and making the runtime system space-aware

Abertay University



#### 2006, 18 machines

#### 2011, one machine



#### region



## Thanks to...

• **CoSMoS** (EPSRC) www.cosmos-research.org esp. Paul Andrews, Carl Ritson, Peter Welch



 CRISP (SICSA) esp. Jim Bown, Alexey Goltsov, Mark Shovman



#### Any questions?

