
Colliding Blobs
with Threading Building Blocks

Adam Sampson
Institute of Arts, Media and Computer Games
University of Abertay Dundee

Motivation

● MSc projects this summer simulating physical
interactions between cells in a tissue

– All-pairs, computing forces between elements

– … at least to start with

● They're interested in parallelising it, but they've
not done any parallel programming before...
how well is this likely to work?

● Try a really simple approach to parallelisation –
what the tutorials tell you to do!

Implementation

● All-pairs nbody in C++0x
● Write readable code and see how well the

compiler does
– … but I'll measure this later

– Hints: inlining, const annotations...

● Liberal use of the standard library and of Boost
● 3D vector class
● All templated over scalar/vector types:
universe<vec3<float>>

Benchmarking

● Benchmarked on several different machines
● run-tests script for automated benchmarking

– Vary compiler options

– Vary runtime options

– Vary number of threads

– Produce data and config files for gnuplot

● Ensured no memory pressure, and profiled to
confirm I was timing the appropriate bit

– … not very hard with this problem!

Compiler options

● Tune for appropriate architecture
– -march=core2, etc. (implies -mtune)

● Try 387 maths vs. SSE maths
– -mfpmath=387, -mfpmath=sse

● Try -O2, -O3, -Os

– Optimising for size used to be a good idea on
cache-starved CPUs...

Vector representation

● Conventional implementation, templated over
scalar type (both float and double)

template<typename T>
class vec3 {
 ...
 vec3<T>& operator+=(const vec3<T>& o) {
 x_ += o.x_;
 y_ += o.y_;
 z_ += o.z_;
 return *this;
 }
 ...

Vector representation

● … or implementation using the SSE intrinsics
● Alignment problems with std::vector

– Use tbb::cache_aligned_allocator

class vec { // just a _m128 really
 ...
 vec& operator+=(const vec& o) {
 v_ = _mm_add_ps(v_, o.v_);
 return *this;
 }
 ...

Results

-O3 with SSE math
and SSE vec class
wins (no great
surprise!)

An aside on std::vector

● There's a persistent myth (especially in the
games world) that “the STL is slow”

– (Note that some myths are true...)

● For a good compiler, this is not the case
– vector should behave identically to an array...

– VC++ is not a good compiler

● In the sequential nbody, GCC's optimiser inlines
everything – you get one large function in the
generated code

Machines

● Atom N270
1.6GHz, 1 core

● Core i7-2600
3.4Ghz, 4 cores

● 2x Xeon E5520
2.27GHz. 4 cores

● All cores 2x HT
● Debian, GCC 4.4,

TBB 3.0

Machine performance

Data

int nbodies_;
// Keep positions packed together for better cache

 // usage above.
// CAA gets us enough alignment for SSE to work.
std::vector<V, tbb::cache_aligned_allocator<V>> pos_;
std::vector<V, tbb::cache_aligned_allocator<V>> vel_;
// This doesn't need to be aligned, but it doesn't hurt.
std::vector<S, tbb::cache_aligned_allocator<S>> mass_;

// FIXME: try different storage layouts

Triangular advance

void advance_tri() {
for (int i = 0; i < nbodies_; ++i) {

for (int j = i + 1; j < nbodies_; ++j) {
V d(pos_[i] - pos_[j]);
S distance(d.mag(soften_));
S mag(dt_ / (distance * distance * distance));
vel_[i] -= d * (mass_[j] * mag);
vel_[j] += d * (mass_[i] * mag);

}
}

for (int i = 0; i < nbodies_; ++i) {
pos_[i] += vel_[i] * dt_;

}
}

Tweaked triangular advance

void advance_tri_cache() {
const S soften(soften_);
const S dt(dt_);

for (int i = 0; i < nbodies_; ++i) {
for (int j = i + 1; j < nbodies_; ++j) {

const V d(pos_[i] - pos_[j]);
const S distance(d.mag(soften));
const S mag(dt / (distance*distance*distance));
vel_[i] -= d * (mass_[j] * mag);
vel_[j] += d * (mass_[i] * mag);

}
}

for (int i = 0; i < nbodies_; ++i) {
pos_[i] += vel_[i] * dt;

}
}

Square advance

void advance_sq() {
for (int i = 0; i < nbodies_; ++i) {

V vel(vel_[i]);
for (int j = 0; j < nbodies_; ++j) {

if (i == j) {
continue;

}
V d(pos_[i] - pos_[j]);
S distance(d.mag(soften_));
S mag(dt_ / (distance * distance * distance));
vel -= d * (mass_[j] * mag);

}
vel_[i] = vel;

}
for (int i = 0; i < nbodies_; ++i) {

pos_[i] += vel_[i] * dt_;
}

}

Mode results

TBB square advance

class sq_tbb_worker {
public:

sq_tbb_worker(universe& u) : u_(u) {}
void operator()(tbb::blocked_range<int> &r) const {

for (int i = r.begin(); i < r.end(); ++i) {
... update velocities as before

}
}

private:
universe& u_;

};
friend class sq_tbb_worker;

void advance_sq_tbb() {
tbb::blocked_range<int> r(0, nbodies_);
sq_tbb_worker worker(*this);
tbb::parallel_for(r, worker);
... update positions as before

TBB vs. sequential

TBB square results

TBB triangular results – spinning

OpenMP square advance

void advance_sq_omp() {
#pragma omp parallel for

for (int i = 0; i < nbodies_; ++i) {
V vel(vel_[i]);
for (int j = 0; j < nbodies_; ++j) {

if (i == j) {
continue;

}
V d(pos_[i] - pos_[j]);
S distance(d.mag(soften_));
S mag(dt_ / (distance * distance * distance));
vel -= d * (mass_[j] * mag);

}
vel_[i] = vel;

}
for (int i = 0; i < nbodies_; ++i) {

pos_[i] += vel_[i] * dt_;
}

}

OpenMP results – argh!

OpenMP results trimmed

Any questions?

● Thanks for listening!
● Get the code:

git clone http://offog.org/git/sicsa-mcc.git
● Contact me or get this presentation:

http://offog.org/
● Threading Building Blocks

http://threadingbuildingblocks.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

