
Making music with occam- π

Adam Sampson

ats@offog.org

University of Kent

http://www.cs.kent.ac.uk/

Making music with occam-π – p.1/31



Introduction

◮ Here’s some work I did last year

◮ Originally a fringe presentation at CPA-2006

◮ An interesting application for process-oriented
programming

◮ But first, some background. . .

Making music with occam-π – p.2/31



Electronic music

◮ . . . would be more appropriately called computational
music

◮ Generating and processing sound using mathematics

◮ Not new at all – electronic synthesisers date back to
the 1940s
◮ Hammond Novachord, Ondioline, Theremin

Making music with occam-π – p.3/31



Analogue becomes digital

◮ Originally done with analogue electronics (much like
analogue computers)

◮ Early work with digital computers in the 1950s-60s
◮ UNIVAC I (1951), Bell Labs (1962)

◮ Digital electronics adopted as soon as they became
available

◮ Commercial microprocessor-based systems in the
1970s
◮ Synclavier, Fairlight CMI

Making music with occam-π – p.4/31



The software age

◮ These days, we use microprocessors, DSPs, . . .

◮ . . . or software on general-purpose computers (“soft
synths”)

◮ Some modern keyboards are actually PCs running
Windows/Linux!

◮ Interfaces and behaviours heavily influenced by the
old analogue world

Making music with occam-π – p.5/31



How does it work?

◮ Generate “pure” waveforms using oscillators

◮ . . . or process sound from an existing instrument (e.g.
voice, guitar)

◮ Apply operators to modify and combine waveforms
◮ Amplify, filter, mix, distort, modulate, delay . . .

◮ Demo later!

Making music with occam-π – p.6/31



MIDI

◮ Connecting audio signals between devices is easy

◮ Sending control signals (“play note C-3 at volume
50”) is a bit more complex

◮ MIDI was introduced in 1981

◮ Reliable, low-speed serial links

◮ Standard messages for things like:
◮ Note on/off
◮ Controller change (e.g. pitch bend, pedals)
◮ Generic purpose data dumps (“sysex”)

Making music with occam-π – p.7/31



Little boxes

◮ We tend to think of this in terms of connecting up
boxes

◮ Literally, with modular synthesisers (from uber.tv):

Making music with occam-π – p.8/31



. . . all made out of ticky-tacky. . .

◮ . . . and guitar effects (from guitargeek.com):

Making music with occam-π – p.9/31



. . . and they all look just the same

◮ . . . which means that software components are often
described the same way (from the Roland D-110
manual):

◮ Lots of software uses this notation to let you build
software synths – Pd, Max/MSP, . . .

◮ Does this look familiar?
Making music with occam-π – p.10/31



Parallel worlds

prefix (0)

succ

delta
consume

◮ (from about 500 papers about occam-π– this one’s
Mario’s)

◮ We use the same approach when designing
process-oriented programs

◮ Boxes are processes; lines are channels

Making music with occam-π – p.11/31



Why is this interesting?

◮ Like any research group, we’re always looking for
applications. . .

◮ Fine-grained, high-performance concurrency

◮ Many potential users who think about problems like
we do

◮ . . . and are even using “our” notation

◮ Want to build reliable, scalable systems

◮ (Plus many of us are musicians already!)

Making music with occam-π – p.12/31



OAK

◮ First shot at building a synthesiser in occam-π
◮ DATA TYPE SIGNAL IS [BLOCK.SIZE]REAL32:

◮ Many simple components – oscillators, operators,
input/output
◮ Most are direct equivalents of modular synth

modules
◮ Most operators are < 10 lines of code

◮ Can sequence music using occam-π code:
out ! note; C.3; SQ

◮ Supports MIDI input from real devices

Making music with occam-π – p.13/31



A simple component

◮ Amplifier – just multiply all incoming numbers by a
constant:

◮ Just like the CO631 examples:

PROC amp (CHAN SIGNAL in?,
VAL REAL32 factor,
CHAN SIGNAL out!)

WHILE TRUE
SIGNAL s:
SEQ
in ? s
out ! signal ([i = 0 FOR BLOCK.SIZE |

s[i] * factor])
:

Making music with occam-π – p.14/31



Problems with OAK

◮ Completely static – must recompile to change layout
or parameters
◮ Makes it awkward to develop new sounds

◮ Not very efficient
◮ Data is often copied
◮ All processes run on every cycle

◮ Proved that the concept was workable, though. . .

Making music with occam-π – p.15/31



Meanwhile, in experimental music. . .

◮ People have been creating sounds and music by
writing software since the 1960s

◮ Increasingly important in the last 20 years

◮ . . . but not normally done as part of a performance!

◮ Why not?

Making music with occam-π – p.16/31



Live programming (2000 -)

◮ You don’t have to play an instrument to appreciate
the performance

◮ Helps involve the audience more in the performance
◮ Often a problem with electronic music

◮ More opportunities for improvisation – sounds as well
as melodies

◮ Control video/lighting too

◮ Raises some interesting problems

Making music with occam-π – p.17/31



Languages for live programming

◮ Must be highly expressive – make changes rapidly

◮ Must be possible to make incremental changes

◮ Control over when changes take effect

◮ Robust against programmer error

◮ Reliable – avoid glitches in the output and timing
problems

◮ Needs both language and development environment
support

◮ Notion of concurrency

◮ Existing examples: ChucK, fluxus (Scheme),
feedback (Perl), . . .

Making music with occam-π – p.18/31



LP from a POP perspective

◮ Kernel for lightweight concurrency – check

◮ Writing occam on the fly is right out!
◮ So use the graphical notation the users already

understand
◮ Graphical process network editor – we’ve done

this before

◮ We know how to build robust POP systems
◮ Design component interfaces to support live

rewiring
◮ Apply design rules on the fly to ensure safety

Making music with occam-π – p.19/31



LOVE

◮ Time for a demo!

◮ Introducing the Live occam-π Visual Environment. . .

◮ Proof-of-concept software – sorry if it all goes
horribly wrong

Making music with occam-π – p.20/31



What is LOVE?

◮ The second generation, after OAK

◮ Components can be created at runtime

◮ Dynamic, repluggable connections

◮ GUI – events, visualisation, changing settings

◮ Data copying is minimised

◮ Processes can sleep

Making music with occam-π – p.21/31



Components in LOVE

from manager

output
port

output
port

OAK−style

inputs

sync
operator
process

◮ Same process, with wrappers to provide ports

Making music with occam-π – p.22/31



The code for that

Making music with occam-π – p.23/31



Replugging ports

◮ Input ports are mobile channels; sending end
registered with a central manager process

◮ Output ports are buffer processes which broadcast to
a set of channel ends
◮ Manager has a (mobile) channel to each output

port
◮ Can connect, disconnect mobile channels

◮ MIDI and audio channels

Making music with occam-π – p.24/31



How it all fits together

Manager

GUI

MIDI in

Audio out

Operator

Operator Operator

Operator

Making music with occam-π – p.25/31



The manager

◮ Starts and connects components dynamically in
response to GUI events

◮ Enforces rules about which ports can connect to
which
◮ Type-checking
◮ Avoid cycles

◮ Generic; does not know what audio is, just that it’s a
type of port

Making music with occam-π – p.26/31



The GUI

◮ Rolling your own GUI is bad, but for now. . .

◮ All based on vectors; scalable

◮ Hierachy of GUI components
◮ Window contains components, which contain

buttons. . .
◮ Events filter down, draw lists filter back up

◮ Processes provided for standard GUI components
(buttons, text boxes, sliders) and event filtering

◮ Seems to work well

Making music with occam-π – p.27/31



Conclusions, 1

◮ The POP model is a natural fit for audio synthesis

◮ . . . even within the constraints of live programming

◮ We can use POP design rules to make it easier to
build correct synthesis networks

◮ Process-oriented programs are pretty :-)

Making music with occam-π – p.28/31



Conclusions, 2

◮ It’s pretty easy to make existing occam-π processes
dynamically pluggable

◮ In conjunction with other work we’ve done
(POPExplorer, etc.), this might lead toward a useful
tool
◮ for teaching music to occam-π programmers?
◮ for teaching occam-π to musicians?

Making music with occam-π – p.29/31



Future work

◮ Better synchronisation (see Carl’s work)

◮ Creating new components at runtime
◮ Draw a network, drag a box around it

◮ Convert to occam code (and back?)

◮ Saving, deleting, . . .

◮ A better-designed GUI library

Making music with occam-π – p.30/31



Thanks for listening!

◮ The code is available from here:
http://offog.org/darcs/research/love/

◮ Any questions?

Making music with occam-π – p.31/31


	Introduction
	Electronic music
	Analogue becomes digital
	The software age
	How does it work?
	MIDI
	Little boxes
	ldots all made out of ticky-tackyldots 
	ldots and they all look just the same
	Parallel worlds
	Why is this interesting?
	OAK
	A simple component
	Problems with OAK
	Meanwhile, in experimental musicldots 
	Live programming (2000 -)
	Languages for live programming
	LP from a POP perspective
	LOVE
	What is LOVE?
	Components in LOVE
	The code for that
	Replugging ports
	How it all fits together
	The manager
	The GUI
	Conclusions, 1
	Conclusions, 2
	Future work
	Thanks for listening!

