
Through the Looking-Glass:
the technology behind the UK

Mirror Service
http://www.mirrorservice.org/

Adam Sampson

ats1@mirrorservice.org

University of Kent

Through the Looking-Glass – p. 1



Introduction

Through the Looking-Glass – p. 2



What is UKMS?

Fast local copies (mirrors) of popular Internet resources
for the UK academic community

Some approximate numbers for September 2004:

201 mirrored sites
4 million files
6 terabytes of disk space
0.4 terabytes of data shipped per day
Average bandwidth usage 42Mbit/sec (peaking at
100Mbit/sec)
120,000 distinct user IP addresses per month
28% outgoing traffic is to UK academic users on
JANET
100% availability from 1999 to 2004

Through the Looking-Glass – p. 3



What we carry

Open Source software (the vast majority)
e.g. Debian GNU/Linux, OpenOffice.org

Academic sites
e.g. Project Gutenberg, Duke Papyrus Archive

Some commercial software
e.g. MATLAB, Netscape

Legacy content (HENSA/Micros, etc.)

Official mirror site for many mirrors

Through the Looking-Glass – p. 4



History

1987 netlib mirror at UKC; access by email
(18 years later, we still mirror netlib)

1992 UKC gets first Internet link;
ISSC-funded HENSA/Unix at UKC, HENSA/Micros at
Lancaster
(hensa.ac.uk)

1999 HENSA merges to become the JISC-funded UK Mirror
Service with staff at UKC and Lancaster
(mirror.ac.uk)

2003 Added third UKMS site at Reading C-POP

2004 JISC contract expires;
UK Mirror Service now operates from UKC Computer
Science
(mirrorservice.org)

Through the Looking-Glass – p. 5



Architecture

Through the Looking-Glass – p. 6



From the outside

via FTP, HTTP or rsync
user connections

connections to source sites
via FTP, HTTP or rsync

connections to source sites
via FTP, HTTP or rsync

internal network

frontend

frontend

frontend

frontend

backend

backend

disk

disk

disk

disk

disk

disk

SCSI

The UK Mirror Service

Through the Looking-Glass – p. 7



Removing the lid

via FTP, HTTP or rsync
user connections

connections to source sites
via FTP, HTTP or rsync

connections to source sites
via FTP, HTTP or rsync

internal network

frontend

frontend

frontend

frontend

backend

backend

disk

disk

disk

disk

disk

disk

SCSI

Through the Looking-Glass – p. 8



Explaining the roles

Frontend and backend hosts

Users make FTP, HTTP or rsync connections to a
randomly-selected frontend host (DNS round-robin
entries)

Frontends act as smart caching proxies to reduce load
on backends and disks

Frontends fetch the data from the backends

Backends have disks attached, each with several
mirrors on

Backends periodically fetch data from source sites to
disks

Through the Looking-Glass – p. 9



Hardware at UKC

4× Sun V120s as frontends

A V120 as “slow” backend with
disk arrays:

a 400-gigabyte Sun 3300
a 4-terabyte Transtec
(cheap!)

A Sun E450 as “fast” backend
with Sun A1000 disk arrays:

2× 160-gigabyte
2× 280-gigabyte
2× 400-gigabyte

Through the Looking-Glass – p. 10



A fortnight in the life

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

11/01
00:00

11/03
00:00

11/05
00:00

11/07
00:00

11/09
00:00

11/11
00:00

11/13
00:00

B
yt

es
/s

ec
on

d

 

UKMS backend traffic levels

compton eri0 out
palomar hme0 out

Through the Looking-Glass – p. 11



Serving content

Through the Looking-Glass – p. 12



Serving in general

Making a directory on a backend disk available to users

Must support a standard directory layout across all
protocols

Must transparently select the right backend for different
mirrors

Must minimise the backend load where possible

Must respect the source site’s presentation instructions

Through the Looking-Glass – p. 13



Zooming in. . .

SCSI

ukms−rsync

ftp−server

Apache

remote−fsd

Apache

OS

disk

disk

disk

frontend backend

rsync

FTP

HTTP HTTP

remote−fs

Through the Looking-Glass – p. 14



An aside: CFTP

A C++ library and a set of tools

Used by nearly every part of the UKMS software

The result of a late-90s UKC research project

Provides a virtual Unix-like filesystem tree with
mountable filesystems

posix-fs connects to a real local directory
ftp-fs connects to another FTP server
remote-fs connects to a directory on another host
(using its own protocol)

Through the Looking-Glass – p. 15



Serving content with FTP

ftp-server is a custom FTP server based on CFTP

Limit on the number of concurrent connections to each
frontend (client should try next FE if full)

Can generate tar archives on the fly

The FTP server exports the CFTP virtual filesystem

Each mirror is mounted using remote-fs from the
appropriate backend in the right place under /sites/

remote-fsd server runs on backends

Through the Looking-Glass – p. 16



Serving content with rsync

ukms-rsync is a patched version of the stock rsync server

Uses libqfs, a C interface to the CFTP virtual filesystem
(looks like Unix system calls)

Uses nearly the same config for CFTP as the FTP
server

Through the Looking-Glass – p. 17



CFTP frontend caching

Initial approach used existing CFTP cache – not good
enough!

Final-year project implemented a better cache
filesystem for CFTP

Cooperative data and metadata caching between all
FTP/rsync processes on a frontend

Tested on real logs – 30 gigabyte data cache reduced
data pulled from backend by 50%

Through the Looking-Glass – p. 18



Serving content with HTTP

We use the Apache web server (twice)

Frontend Apache acts as a caching proxy, forwarding
requests on to the appropriate backends

Apache’s cache behaves poorly for large files, though,
so we redirect requests for CD images to the FTP
server

Most virtual hosts handled directly by frontends

“Special” virtual hosts handled on backends using extra
ports

Doesn’t use CFTP yet, but we’re working on it

Through the Looking-Glass – p. 19



The browser

Generates our web interface under /sites/

A (C!) CGI program that runs on backends

Supports browsing and extracting from archive files

Displays likely README files and mirror descriptions

Through the Looking-Glass – p. 20



The search engine

Uses a separate machine and a huge PostgreSQL
database

Indexing scripts examine newly-mirrored data

Web frontend does queries against the database

Much more complex than it sounds – good searching is
difficult!

Through the Looking-Glass – p. 21



Mirroring

Through the Looking-Glass – p. 22



Mirroring in general

Making a local directory look like one on the source site

May need to exclude some content, or add extra content

Need to cope with source site being down

Need to update search engine

Need to copy mirrored content to other UKMS sites

Through the Looking-Glass – p. 23



FTP mirroring with syncfs

syncfs is a general mirroring tool based on CFTP

Uses ls-lR files if available on source site

Can use multiple connections

Can resume partial downloads

Updates mirroring status files (hidden from users)

Lots of special behaviour to deal with broken FTP
servers

Through the Looking-Glass – p. 24



Peer mirroring

syncfs mirroring technique using two UKMS sites (UKC
and Lancs)

Both UKMS sites connect to source site

One mirrors in alphabetical order, the other in reverse
alphabetical order

Each checks the other UKMS site to see whether it’s
got the file they want before going to the source site

On average, each pulls half the content from the source
site

Works when one UKMS site is down too!

Through the Looking-Glass – p. 25



Web mirroring

Actually a general term for anything that’s not FTP

Wrapper around off-the-shelf tools
rsync for rsync mirroring
pavuk for HTTP mirroring
tucopy for Tucows mirrors

Has workarounds for broken tools
Detect empty files and remirror
Fix up bad links in HTML
Detect “stuck” mirroring processes and restart

Push mirroring via a modified writable rsync server

Through the Looking-Glass – p. 26



Tying it all together

Through the Looking-Glass – p. 27



Metaconf

Configuring all our software by hand would be
impractical

Metaconf takes descriptions of mirrors in a standard
format (MDF)

Provides a uniform interface that scripts can use to get
at the descriptions

Generates per-site configuration files for software that
can’t use the Perl interface

Copes with remapping disks when faults occur

Through the Looking-Glass – p. 28



MDF

An application of RDF (yes, the Semantic Web is
useful!)

An MDF file describes a single mirror:
The name, description and classification of the mirror
The logical disk upon which it’s stored
The host that performs mirroring
How and when to mirror it (including any special
options)
How it can be accessed (protocols, virtual hosts)

Through the Looking-Glass – p. 29



What we’ve learnt

Through the Looking-Glass – p. 30



. . . about mirroring

Source sites are usually broken
The most important source sites are always
overloaded
With FTP listings, anything that can go wrong will

. . . but FTP is still the best protocol for mirroring
HTTP mirroring is basically guesswork
rsync works badly for very large mirrors

Off-the-shelf mirroring software is unreliable

Source site maintainers don’t have the time to listen to
mirror maintainers

Through the Looking-Glass – p. 31



. . . about serving

Client software is usually broken
“Download accelerators”
Incorrect HTTP Redirect handling
Large file handling (Fedora DVDs)

Malicious users exist

Overzealous indexing bots also exist

Frontend caching is a really good idea

Through the Looking-Glass – p. 32



. . . about protocol design

FTP has some serious problems
Poor takeup of standardised directory listings
The whole active/passive mess – NAT/firewall
unfriendly

HTTP has some serious problems
No directory listings (WebDAV isn’t there yet)
It’s not good for mirroring

rsync has some serious problems
Huge latency when transferring initial tree
Random failures during transfers
Backwards compatibility makes code messy

All protocols suck!

Through the Looking-Glass – p. 33



. . . about software design

Don’t! Big design up front doesn’t work for us

Our most reliable systems are those that have evolved
slowly

Clear code is easier to modify than a well-documented
mess

Use the right language for the job

Simple file formats are best

Being self-healing is useful

Version control software is invaluable

Through the Looking-Glass – p. 34



Future plans

Through the Looking-Glass – p. 35



Making our software Open Source

UKC owns copyright on most of the code

Need to tidy up build systems and package for release

Patches to existing software (rsync) are easier

Package as “Mirror Service In A Box” for others to use

Through the Looking-Glass – p. 36



Reducing cost

Sun kit is reliable but (very!) expensive

PCs and SATA disks are cheap (free in some cases)
and fast

Our plan is:
6 PCs, each with 4 300-gigabyte SATA disks
Mirrored pairs of machines for redundancy
Each machine is both a frontend and a backend

We aren’t the only people who’ve noticed this – Google
and archive.org take the same approach on a much
larger scale!

Through the Looking-Glass – p. 37



The End

Through the Looking-Glass – p. 38



Any questions?

Find us at:
http://www.mirrorservice.org/

Through the Looking-Glass – p. 39


	Introduction
	What is UKMS?
	What we carry
	History
	Architecture
	From the outside
	Removing the lid
	Explaining the roles
	Hardware at UKC
	A fortnight in the life
	Serving content
	Serving in general
	Zooming inldots 
	An aside: CFTP
	Serving content with FTP
	Serving content with rsync
	CFTP frontend caching
	Serving content with HTTP
	The browser
	The search engine
	Mirroring
	Mirroring in general
	FTP mirroring with syncfs
	Peer mirroring
	Web mirroring
	Tying it all together
	Metaconf
	MDF
	What we've learnt
	ldots about mirroring
	ldots about serving
	ldots about protocol design
	ldots about software design
	Future plans
	Making our software Open Source
	Reducing cost
	The End
	Any questions?

