
Preprint

Generics in Small Doses: Nanopass Compilation with Haskell

Adam T. Sampson
University of Kent, UK

ats@offog.org

Neil C. C. Brown
University of Kent, UK

neil@twistedsquare.com

Abstract
Tock is a new compiler for concurrent imperative programming
languages, designed using nanopass techniques. Nanopass com-
pilers transform a program from source code to the target form
through the application of a series of transformation passes. Be-
cause these passes are usually small and self-contained, the result-
ing compiler is highly modular, and easy to test and extend. Most
existing nanopass compilers are implemented in dynamically-typed
languages, but Tock is written in Haskell. We describe the generic
programming interface that we have designed for building nano-
pass compilers in Haskell, and show how it can be implemented
efficiently by combining techniques from the “Scrap Your Boiler-
plate” and Uniplate generic programming systems.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

General Terms Languages, Performance

1. Introduction
The occam-π programming language (Welch and Barnes 2005)
supports very large numbers of lightweight concurrent processes
which communicate using channels and barriers, and ensures safety
through compile-time static analysis. The existing occam-π com-
piler is nearly twenty years old and written in C. It is difficult to
maintain and develop, and generates very poor native code for mod-
ern processors.

Tock is a new compiler for concurrent imperative languages
such as occam-π and Rain (Brown 2006). It generates portable
C99 or C++ code, which can be translated to efficient native object
code by any standard compiler. Its primary aim is to be extremely
flexible for language experimentation, particularly with a view to
use in student projects.

To further this goal, Tock is a nanopass compiler (Sarkar et al.
2004): it is built from a series of small passes which operate upon
an abstract syntax tree (AST) in various ways, transforming it step
by step into the target language (figure 1). The types of passes
found in a nanopass compiler may include:

simplifications which translate a complex language feature into a
series of simpler operations (for example, turning parallel as-
signment into sequential assignment through temporary vari-
ables);

[Copyright notice will appear here once ’preprint’ option is removed.]

restructurings which move items around in the AST (for example,
grouping variable declarations);

annotations which add extra information to the AST that can be
used by later passes (for example, marking free variables in
definitions); and

checks which ensure that properties hold on the AST (for example,
type-checking).

Since passes are typically very simple, they are straightforward
to write, modify and test. The resulting compiler is extremely
modular and easy to navigate, and new features can be implemented
by writing additional passes.

Tock is implemented using Haskell. We chose Haskell because
it is the most commonly-used functional language at the University
of Kent – all of our undergraduates will have at least some experi-
ence with it – and because it has been used successfully to write a
number of existing compilers, such as the Glasgow Haskell Com-
piler (GHC), Yhc and Pugs.

Nanopass compilers are usually written using dynamically-
typed languages such as Scheme. The implementation of a nano-
pass compiler in a statically-typed language such as Haskell raises
a number of interesting questions. In this paper, we will discuss
our generics-based approach to the implementation of a nanopass
compiler using Haskell.

We start in section 2 with an overview of Tock’s structure and
major components. In section 3, we describe our experience with
the “Scrap Your Boilerplate” and “Uniplate” generics systems, and
give our requirements for generic operations. In section 4, we
describe Tock’s generic traversal interface, and we show in sections
5 and 6 how it can be implemented using approaches drawn from
both generics systems.

2. An Overview of Tock
In this section, we will describe some of the design decisions that
we have taken during Tock’s development.

2.1 AST Representation
The representation of the AST is absolutely fundamental to the
structure of a nanopass compiler, since nearly every part of the
compiler is concerned with generating, searching or manipulating
it. Not only must it be flexible enough to describe the user’s pro-
gram at every stage of its transformation, it must also be possible
to operate efficiently upon it.

The simplest approach in Haskell is to use a single algebraic
data type with constructors for every possible node in the AST:

data Node = Seq [Node]
| Assign [(Node, Node)]
| Plus Node Node
| Variable String
| ...

Generics in Small Doses: Nanopass Compilation with Haskell 1 2009/3/4

...passpasspasspass
AST

frontend backend

Figure 1. Basic structure of a nanopass compiler

This is somewhat analogous to the AST representation in
the existing monolithic occam-π compiler, which uses a single
large C union type – or to the representations generally used in
dynamically-typed languages where there are no type constraints.
The obvious downside is that it is possible for faulty code in the
compiler to construct an invalid AST; for example, assignment to
an expression. We have found that such programmer errors are
common when writing and refactoring passes.

Tock’s AST therefore uses a more natural Haskell representa-
tion, with a separate algebraic data type for each type of AST node:

data Process = Seq [Process]
| Assign [(Variable , Expression)]
| ...

data Expression = Plus Expression Expression
| ExprVariable Variable
| ...

data Variable = Variable String

This representation catches many programmer errors at compile
time; it is now impossible to construct an syntactically invalid AST
(although you can, of course, still construct an AST corresponding
to a program that does not work).

To support annotation passes, and to simplify error reporting,
most constructors in the AST have a first argument of type Meta,
a record type that contains metadata about a particular node in
the AST: the source position corresponding to the node, and any
annotations that have been applied to it.

occam-π is a reasonably large and complex language: Tock’s
AST currently contains 37 algebraic data types with more than 160
constructors between them.

2.2 Monadic Operations
Tock makes heavy use of monads and monad transformers (Jones
1995). Nearly all of Tock runs in the PassM monad, which is
defined as:

type PassM = ErrorT ErrorReport (StateT CompilerState IO)

ErrorReport is the representation of an error message, con-
taining a source position and a string. This allows errors to be
handled consistently in a single location for all parts of Tock.
CompilerState is a record containing compiler options, name def-
initions, and various other state useful to all passes. IO is included
in the stack because several passes need access to files – and be-
cause being able to call putStrLn is sometimes useful as a last re-
sort when debugging.

Some parts of Tock need to track local state, accumulate lists
of output, and so on. This can be achieved by stacking additional
monad transformers on top of PassM:

type AnalyseM = StateT (Map String FunctionInfo) PassM

A type class is provided to allow access to PassM’s facilities
from other monads stacked on top of it, using the same approach as
the MonadState (etc.) classes in the monad transformer library.

2.3 Parsing
Tock’s occam-π parser is built using Parsec, a backtracking mo-
nadic parser combinator library (Leijen and Meijer 2001). Parsec

makes writing a parser very straightforward; in many cases the
parser functions are simply translations into Haskell syntax of the
equivalent productions in the occam-π grammar, returning the cor-
responding piece of AST:

type OccParser = GenParser Token CompilerState

process :: OccParser Process
process = seqProcess <|> assignProcess <|> ...

seqProcess :: OccParser Process
seqProcess

= do reserved "SEQ" >> eol
indent
ps <- many process
outdent
return $ Seq ps

Our only complaint is that Parsec is not yet provided in monad
transformer form, so we cannot stack it on top of PassM directly;
some additional manipulation is necessary to get the state and error
reports into and out of the OccParser monad.

It is possible to do lexical analysis inside Parsec itself, but we
found it advantageous to use a separate lexer, written using the Alex
lexer generator. Tock’s lexer returns a stream of Tokens, which are
then fed through a series of small passes prior to parsing (figure 2).
Currently, token-stream passes are used to apply the occam-π C-
like preprocessor rules (themselves parsed using a separate Parsec
parser), insert included files, and turn occam-π’s indentation-based
syntax into one with explicit marker tokens. These passes run in
PassM, and can perform IO and report errors just as the later AST
passes do.

2.4 Nanopasses
The bulk of Tock’s code consists of nanopasses that operate upon
the AST. Each pass is a function in the PassM monad that takes an
AST and returns a new AST:

type PassType = AST -> PassM AST

A typical nanopass operates only upon selected parts of the
AST: it performs what is in effect a recursive pattern-match across
the entire AST, looking for nodes of interest. Haskell’s built-in
pattern-matching does not provide recursion – there is no way of
specifying a pattern that will match any Process anywhere within
the AST – so a pass written using only Haskell pattern-matching
would need to include patterns to match every possible type and
constructor in the AST and then explicitly recurse. This would
clearly be very inconvenient.

Instead, we write just the functions that operate upon the parts of
the tree we are interested in, and use generic programming to apply
them to the appropriate parts of the tree. This is another reason
for using multiple types in our AST representation: we can usually
specify our operations in terms of a function that modifies a tree
node of the appropriate type.

In practice, it is useful to leaves passes themselves as generic
functions that can be applied to any type found in the AST, rather
than restricting them to the AST type itself. This makes it easier
to construct unit tests for passes, since you can run a pass against

Generics in Small Doses: Nanopass Compilation with Haskell 2 2009/3/4

tokens AST
pass passtokenise parse

source

Figure 2. Tock’s occam-π frontend

any fragment of the AST without needing to construct a complete
AST around it – for example, a pass that operated primarily upon
Expressions could simply be called with an Expression as an
argument in its unit tests.

Tock’s performance depends largely upon the generics system
used to implement its passes. Including basic Haskell types, a large
occam-π program will have upwards of a million data values in its
initial AST, and a typical Tock compilation involves approximately
fifty nanopasses, each of which must traverse the AST looking for
items to modify. It is therefore important for AST traversals to be as
efficient as reasonably possible; a traversal strategy that performs
acceptably in a conventional compiler with one or two passes is not
necessarily appropriate for a nanopass compiler.

2.5 Ordering Passes
We must combine our passes in the correct sequence to give the
whole compiler. Since each pass is a monadic function on the AST,
this is simply monadic sequencing at the lowest level:

compile x = pass1 x >>= pass2 >>= pass3 ...

We use >>= directly when a single logical pass requires multiple
traversals of the AST, composing several functions to form the
pass. However, it would be awkward to manage the complete set
of passes in a nanopass compiler this way; we probably want to
give the user some feedback about which pass is running, and there
are other useful properties of passes that we want to keep track of.

One of the problems of nanopass compiler design is running the
passes in the correct order. The ordering must take into account:

• The semantic ordering of passes. A pass that removes an
element from the AST must run before other passes that expect
that element to have been removed.

• Efficiency concerns. The size of the AST should be minimised
to reduce traversal costs.

• User-interface concerns. Errors must be found and reported in
the user’s program before the information necessary to report
those errors in an intelligible fashion has been removed from
the AST.

Tock addresses this problem by providing a set of properties that
the AST can have – such as “user datatypes have been resolved”,
or “parallel assignment has been removed” – and allowing passes
to specify the lists of properties that they depend on and provide:

resolveUserTypes :: Pass
resolveUserTypes = pass "Resolve user types"

[Prop.typesChecked]
[Prop.userTypesResolved]
(applyDepthM doType)

where ...

Each property is described by the Property data type, which
contains a name for the property along with a function that takes
an AST and fails if the property does not hold – usually using a
generic query:

userTypesResolved :: Property
userTypesResolved

= Property "User types resolved"
(assertNull . listify findUserType)

Given this information, Tock can ensure that passes are being
run in a reasonable order, and that passes are doing their jobs
correctly. Since some properties are quite expensive to check, the
checks are enabled only if Tock is invoked with an appropriate
debugging option.

It is possible to compute a valid pass ordering automatically
given the dependency information; Tock was initially implemented
this way. However, we found that this generally resulted in a non-
optimal – and often surprising – pass ordering, and we were forced
to define uncheckable properties in order to force the desired order-
ing. We now specify the pass ordering explicitly. Tock checks that
the property dependencies are satisfied by the specified ordering;
this helps to detect dependency problems introduced when adding
or reordering passes.

Many passes will be conditional on particular compiler options
being specified – for example, some checks are only applicable to
a particular frontend or backend, and some optimising transforma-
tions should only be applied if optimisation has been enabled. Pass
specifications can therefore include a function to decide whether
the pass is enabled. Maintaining dependency information makes it
possible to ensure that pass dependencies are satisfied regardless of
the compiler options selected.

2.6 Output
Once the main sequence of passes has completed, the AST is in
a form essentially equivalent to the code that will be generated
– AST features that do not have a direct translation in the target
language will have been rewritten into more appropriate forms. A
final backend pass writes the AST out to a file in the appropriate
target language. Tock currently has three backends: C99, C++, and
XML, the latter just dumping the final AST in a form that can be
easily parsed by other programs (such as IDEs or documentation
extractors).

The C99 and C++ backends have a large quantity of code in
common owing to the similarity between the two languages; while
they use different runtime libraries, they translate expressions, ba-
sic structures and many datatypes in the same way. We could sim-
ply write a set of helper functions and a set of backend-specific
functions, but this becomes awkward when a shared helper func-
tion needs to call a backend-specific function (figure 3) – we would
have to add checks for which backend was in use whenever this
was necessary.

To avoid this problem, we use a Haskell approximation of a
virtual function table. The C99 and C++ backends run in the CGen
monad, which is built on top of PassM (and thus includes IO):

type CGen = ReaderT (Handle, GenOps) PassM

The Handle is the file handle to write the generated output to,
and GenOps is a record of generator functions for various AST
constructs:

data GenOps = GenOps {
genExpression :: Expression -> CGen (),
genProcess :: Process -> CGen (),
...

Generics in Small Doses: Nanopass Compilation with Haskell 3 2009/3/4

CCAST
generate

object executable
GCC analyse GCC link

object

Figure 4. Tock’s C backend

C backend C++ backend

genProceduregenProcedure
(C) (C++)

(C++)(C)
genVariable genVariable

genProcess
(shared)

Figure 3. Calling between common and backend-specific func-
tions

}

Some of these functions are common to both backends; others
have different implementations for the C99 and C++ backends.
When a backend is started, the GenOps structure is initialised with
the appropriate functions for that backend.

A type class CGenCall includes an operation to call any one of
these functions, and an instance is provided for each of the possible
function kinds that gets the current GenOps from the monad and
looks up the requested function.

class CGenCall a where
call :: (GenOps -> a) -> a

instance CGenCall (a -> CGen z) where
call f x0 = do (, ops) <- ask

f ops x0

As a result, the backend code can just say call genProcess a to
invoke the appropriate implementation of genProcess. This mecha-
nism is particularly useful when writing unit tests for the backend:
it is very easy for a unit test to replace an uninteresting function
with something that outputs a dummy value.

After the entire AST has been written out, Tock invokes the
system’s C or C++ compiler to produce native assembly code and
a native object file. In order to allocate a reasonable amount of
stack space for each lightweight process at runtime, Tock analyses
the generated assembly code, computing the stack usage of each
function. The stack usage information is written out to a separate C
file, compiled, and finally linked with the main object file and the
runtime libraries to give an executable (figure 4).

3. Haskell Generics
There are a number of existing generic programming systems for
Haskell (Rodriguez et al. 2008). Tock uses a hybrid approach based
upon the “Scrap Your Boilerplate” and “Uniplate” systems.

3.1 Scrap Your Boilerplate
The “Scrap Your Boilerplate” approach (SYB) extends the Haskell
runtime system with introspection facilities that allow the types and
structures of values to be inspected at runtime, and a cast operation
that allows a value to be coerced to a different type (Lämmel and
Peyton Jones 2003). To operate upon a data type using SYB, it
needs instances of the Data and Typeable type classes. These can
be derived automatically for most algebraic types by GHC, and
can easily be defined by hand in the few cases where GHC is
unable to derive them; we have found this to be necessary for some
parameterised types.

SYB is designed around two fundamental operations: mkT,
which converts a function of type a -> a into a generic function
that can be applied to any type, and gmap which applies a generic
function to all the immediate children of any type. It is particularly
important to note that gmap does not implicitly recurse: this makes
it easy to write generic operations that only traverse parts of a data
structure based on the types and values they find within it.

A number of variations upon these fundamentals are also pro-
vided to support other types of generic operations – for example,
generic queries of type a -> b, and generic monadic operations of
type a -> m a. It is also possible to extend a generic operation so
that it operates on multiple types, with a different function for each
type; this makes it possible to write traversals that look for or mod-
ify several types at once.

From these it is possible to construct a variety of higher-level
operations, some of which are also included in the SYB library. For
example, the everywhere function applies a function recursively
everywhere that it matches in an arbitrary data structure:

cStyleNames :: Data t => t -> t
cStyleNames = everywhere (mkT doName)

where
doName :: Name -> Name
doName (Name s) =

Name [if c == ’.’ then ’ ’ else c | c <- s]

The set of higher-level operations included in SYB is fairly
limited; it is, however, very straightforward for the user to define
their own operations. We found it useful to define higher-level
operations that provided more control over which parts of the AST
to descend into.

SYB’s major disadvantage is efficiency, since it relies entirely
upon run-time introspection of the values it is operating upon. We
have found the performance of the provided high-level operations
such as everywhere to be particularly unsatisfactory when used on a
large data structure such as Tock’s AST, because they must examine
every value in the structure – not just our algebraic data types, but
every Char in every String!

Since this means examining millions of values in each traversal
of the AST for a large occam-π program, this makes SYB’s de-
fault high-level operations unacceptably slow for use in a nanopass

Generics in Small Doses: Nanopass Compilation with Haskell 4 2009/3/4

compiler. Profiling our initial version of Tock showed that it was
spending most of its time in the cast operation.

We addressed this problem at first by providing a “pruning”
traversal that avoided recursing into String , Meta, and other types
that we knew would never contain types we would want to operate
upon. While each pass still examined many unnecessary nodes, the
efficiency improvement was sufficiently great to make Tock usable
for medium-sized programs.

SYB ships with GHC as the Data.Generics module, requiring
no additional libraries or tools. This makes it attractive for use
in Tock, since the effort necessary to install and work on it is
minimised. On the other hand, other Haskell implementations do
not yet support SYB; we do not consider this a problem, since Tock
already depends on a number of other GHC extensions.

3.2 Uniplate
The Uniplate library (Mitchell and Runciman 2007) takes an al-
ternative approach to generic operations upon data structures con-
taining multiple types. For each pair of types x, y where x may
contain values of type y, Uniplate requires a type class instance
Biplate x y, which provides a biplate operation to efficiently
map over the “largest” (in terms of subtree size) y values within
an x value.

Since these instances would be extremely tedious to write by
hand – Tock would need over a thousand of them – and GHC cannot
derive them automatically, they are usually generated using an
external tool such as DrIFT (Winstanley 1997). Alternatively, the
PlateData module implements Biplate in terms of SYB’s Data,
at a small performance cost.

Like SYB, Uniplate provides a number of higher-level utility
functions built on top of the low-level operations; for example,
transform is equivalent to SYB’s everywhere:

cStyleNames :: Biplate t Name => t -> t
cStyleNames = transform doName

where
doName :: Name -> Name
doName (Name s) = ...

Uniplate also provides descend, which is similar to gmap,
specifically to support the kind of explicit-descent traversals that
gmap makes possible: it applies a function to the largest values of
the target type in the value it is given. In general, Uniplate’s library
of high-level traversal functions is richer and better suited to use
in compilers than SYB’s; this reflects Uniplate’s history of use in
compilation-related projects such as Yhc.

Uniplate’s greatest advantage over SYB is that it is massively
more efficient for complex data structures. Since the low-level
Uniplate operations always know what type they are looking for,
they can avoid recursing into parts of the data type that cannot
possibly contain anything interesting – and therefore the “every
Char” problem from SYB goes away.

However, Uniplate does not support generic operations over
more than one type – a deliberate design decision on the part
of Uniplate’s authors, who observed that “most traversals have
value-specific behaviour for just one type” (Mitchell and Runciman
2007). While we agree with this assessment, the result is that
Uniplate cannot be used for the handful of operations in Tock that
do need to match more than one type.

In addition, Uniplate is not presently included with GHC, nor
is it yet included in many Linux distributions; we would need to
include it as part of the Tock distribution, or require our users to
install it separately.

3.3 Desiderata
From our experience with both SYB and Uniplate, we identi-
fied the features that we considered necessary to implement Tock
nanopasses using generic operations:

• Monadic transformations. Transformation functions must run
in PassM (or a similar monad), so they have access to the
compiler’s state and can report errors. The few passes that are
pure functions can be wrapped with return .

• Explicit descent. Some passes must be able to decide whether
– and when – to descend into a subtree. A convenient way to
do this is to provide a function like gmap or descend. (An al-
ternative used by Strafunski (Lämmel and Visser 2002) is to
define tree traversal strategies separately from the transforma-
tion functions, but in Tock this would mean duplicating code in
many cases.)

• High-level common operations. Most passes do not need ex-
plicit descent; we need helper functions like everywhere to ap-
ply simple depth-first transformations and checks to the tree.

• No need to define instances. Tock’s AST representation is
complex, and often extended or refactored. Writing type class
instances by hand would require a lot of effort; we must be
able to generate code to implement them automatically with an
external tool, or, ideally, have GHC derive them for us.

• Applied operations are themselves generic. That is, a pass
– the application of a set of type-specific functions – can be
applied to both an AST and an AST fragment of another type,
for testing purposes.

• Multiple target types. Several passes – particularly those that
walk the tree updating some internal state – need to operate
upon multiple target types at once. (This is where Uniplate fails
to satisfy our requirements.)

• Decent performance. Walking the entire tree for every pass is
unacceptably inefficient; each traversal should examine only the
AST nodes that could contain the types affected by the generic
operation. (This is where SYB fails to satisfy our requirements.)

Both SYB and Uniplate very nearly meet our requirements. We
will describe the interface that is provided for generic operations in
Tock, and show how it can be implemented using approaches based
on both SYB and Uniplate.

4. Tock’s Generic Traversal Interface
Tock’s Traversal module provides an abstract interface for per-
forming generic operations that (mostly) hides the details of the
implementation from the programmer. The interface includes both
low-level and high-level functionality.

The types in the interface will depend on the underlying imple-
mentation. For this explanation, the types are shown as they are for
the SYB implementation, simplified somewhat: in the real inter-
face, everything is parameterised over the monad rather than being
fixed to PassM.

4.1 The Low-Level Interface
Performing a generic operation using the low-level interface is a
two-step process: the operation is first constructed, then applied to
a value giving a new value. An operation consists of a set of type-
specific monadic functions that will be applied if their types match;
for example, a type-specific function that operates upon Process
would be defined as:

type Transform t = Data t => t -> PassM t

Generics in Small Doses: Nanopass Compilation with Haskell 5 2009/3/4

doProcess :: Transform Process
doProcess = ...

Traversal provides an empty set of operations, baseOp, and
a combinator function extOp that adds a new function to the set.
(Presently, each set may contain only one function for each target
type; this restriction may be lifted in the future.)

baseOp :: Ops
extOp :: Ops -> Transform t -> Ops

Given a set of Ops, two functions are provided that construct
generic functions from them:

makeDescend :: Ops -> (forall t. Data t => Transform t)
makeRecurse :: Ops -> (forall t. Data t => Transform t)

For each operation, these are used to generate descend and
recurse functions:

• descend behaves much like Uniplate’s descend: it attempts to
apply each function in the set to the largest values of each target
type contained inside the value it is given as an argument. If
none of the functions match, it simply returns the value it was
given.

• recurse , on the other hand, first tries to apply each of the
functions in the set to the value it is given as an argument; if
none of them match, then it behaves like descend.

As an example, suppose we have the following data structure
representing a list of Bools:

data Cell = Cons Bool Cell | Nil

value :: Cell
value = Cons False (Cons False (Cons False Nil))

We can construct a set of operations that matches the Cons
constructor, and sets the Bool to True:

ops = baseOp ‘extOp‘ doCell
where

doCell :: Transform Cell
doCell (Cons c) = return (Cons True c)
doCell c = return c

If we apply makeDescend ops to value, the operation will be
applied to the (single) largest subtree of value that is of type Cons,
resulting in:

Cons False (Cons True (Cons False Nil))

If we apply makeRecurse ops instead, the operation will be
applied to value itself, with the result:

Cons True (Cons False (Cons False Nil))

Note that the innermost False remains unchanged in both cases,
because in neither case is there implicit descent: once a type-
specific function matches, it is up to that function to explicitly
descend into the corresponding subtree if desired.

This interface may seem counter-intuitive, but it can be used
to construct all the common types of pass in Tock with minimal
effort. Let us take as an example a pass that walks the AST, printing
messages as it enters and leaves Seq nodes. This follows the usual
pattern for explicit-descent Tock passes, showing the typical uses
for descend and recurse :

printStructure :: PassType
printStructure = recurse
where

ops = baseOp ‘extOp‘ doProcess
descend = makeDescend ops
recurse = makeRecurse ops

doProcess :: Transform Process
doProcess (Seq ps)
= do print "Seq {"

ps’ <- recurse ps
print "}"
return ps’

doProcess p = descend p

descend is used when a type-specific function has been applied
to a value in the AST and not found anything interesting, in order
to descend into its children without applying the same type-specific
function again. recurse is used to descend into child nodes from a
value you have matched, and to start the generic operation at the
top level.

4.2 Implicit Descent
The majority of passes in Tock do not need explicit descent; they
are perfectly content to have their type-specific functions applied
wherever they match in the tree. To write a type-specific function
that recursed depth-first throughout the tree, we would make it call
descend on the value it was passed before examining the result:

doProcess :: Transform Process
doProcess p
= do p’ <- descend p

case p’ of
...

To avoid writing this boilerplate in every type-specific function
that should recurse, we can abstract this out into a higher-order
function that transforms a type-specific function into a recursing
version of itself:

makeDepth :: Ops -> Transform t -> Transform t
makeDepth ops f
= do v’ <- (makeDescend ops) v

f v’

We can now use makeDepth when building a set of operations,
to add operations that should be applied recursively:

defrobulate :: PassType
defrobulate = makeRecurse ops

where
ops = baseOp ‘extOp‘ makeDepth ops doProcess

‘extOp‘ makeDepth ops doExpression

doProcess :: Transform Process
doExpression :: Transform Expression
...

Tock provides a similar helper function, makeCheck, for con-
verting a check function of type t -> PassM () into an implicit-
descent Transform t; this is used in passes that want to check prop-
erties of the AST, such as the typechecker.

4.3 The High-Level Interface
For the majority of passes that apply just one or two functions
with implicit descent, this is still needlessly verbose. We therefore
provide a number of helper functions to apply a small number
of type-specific functions recursively throughout a data structure,
implemented in terms of the operations above:

applyDepthM :: Data t1 => Transform t1

Generics in Small Doses: Nanopass Compilation with Haskell 6 2009/3/4

-> (forall s. Data s => Transform s)
applyDepthM f1 = makeRecurse ops

where
ops = baseOp ‘extOp‘ makeDepth ops f1

applyDepthM2 :: (Data t1, Data t2) =>
Transform t1 -> Transform t2
-> (forall s. Data s => Transform s)

applyDepthM2 f1 f2 = ...

Note that applyDepthM is equivalent to SYB’s everywhere or
Uniplate’s transform. Passes using these functions are very simple:

disentangle :: PassType
disentangle = applyDepthM doProcess

where
doProcess :: Transform Process
...

5. Implementing Traversals with SYB
To implement our traversal interface using SYB, we must find a
cure for SYB’s performance problems.

5.1 Brute Force
If performance were not a concern – that is, if we did not mind
traversing the entire tree every time – we can implement the inter-
face above on top of SYB in a very straightforward manner. A set
of operations is represented as a function that, given the descend
function, builds the recurse function which tries to apply all the
type-specific functions or otherwise descend:

type MakeRecurse = (forall t. Data t => Transform t)
-> (forall t. Data t => Transform t)

type Ops = MakeRecurse

The empty set of operations simply returns the descend function
as-is:

baseOp :: Ops
baseOp = id

Adding a type-specific function to the set means extending the
generic function with the new function:

extOp :: Data t => Ops -> Transform t -> Ops
extOp ops f = (\descend -> (ops descend) ‘extM‘ f)

recurse is then just that generic function:

makeRecurse ops = ops (makeDescend ops)

descend uses the monadic version of gmap to apply recurse to
all the children of the value it is given:

makeDescend ops = gmapM (makeRecurse ops)

5.2 Tracking the Types
To avoid traversing the entire tree with each operation, we need to
know when to stop – that is, when it is not worth recursing into a
data value, because it cannot possibly contain any of the types we
are interested in.

For each type we encounter, we need to determine whether it is a
“hit” (one of the target types), a “through” (a type that may contain
one or more of the target types), or a “miss” (a type that cannot
contain any of the target types). We can do this by reusing part of
Uniplate: the PlateData module has to make exactly this decision
in order to implement Biplate using the SYB facilities, albeit for
only one target type. Two functions adapted from the PlateData
code allow us to find a unique type identifier for a value, and to
construct a map from type identifiers to decisions:

data TypeDecision = Hit | Through | Miss
type TypeSet = Map TypeKey TypeDecision

typeKey :: Typeable a => a -> TypeKey
makeTypeSet :: [TypeKey] -> TypeSet

We provide gmapMWith, which takes a TypeSet as an extra
argument, and acts upon the decisions in it for each child:

gmapMWith ts f = gmapM (each f)
where

each f x
= case Map.lookup (typeKey x) ts of

Just Hit -> f x
Just Through -> gmapM (each f) x
Just Miss -> return x
Nothing -> return x

This is essentially gmapM with the behaviour of biplate : it
applies a generic function to the largest subtrees of any of the target
types.

We now modify Ops to keep track of the target types, and make
baseOp and extOp update the set of types when a new function is
added:

type Ops = ([TypeKey], TypeSet, MakeRecurse)

baseOp :: Ops
baseOp = ([], makeTypeSet [], id)

extOp :: forall t. Data t => Ops -> Transform t -> Ops
extOp (tks, , mk) f

= (tks ’,
makeTypeSet tks’,
(\descend -> (mk descend) ‘extM‘ f))

where
tks ’ = typeKey (undefined :: t) : tks

We include the TypeSet in Ops because it is rather expensive
to build, since makeTypeSet must walk the graph of type relation-
ships to determine which types may contain the target types; doing
it in extOp means it is only computed once per traversal.

recurse is the generic function, as before:

makeRecurse ops@(, , f)
= f (makeDescend ops)

descend can now be implemented in terms of gmapMWith:

makeDescend ops@(, ts,)
= gmapMWith ts (makeRecurse ops)

The resulting code meets our criteria above, performing signifi-
cantly better than the plain-SYB implementation. However, pro-
filing Tock compiling a typical program reveals that it is now
spending most of its time inside typeKey (which involves an
unsafePerformIO). We are still paying a penalty for the use of
type introspection.

6. Implementing Traversals with Uniplate
We have attempted to fix the performance problem with SYB, with
some measure of success. Can we instead fix the problem that we
had with Uniplate – that is, can we make Uniplate operate upon
multiple target types?

The answer is a qualified “yes”. We have not extended Uniplate;
instead, we have used a similar approach to provide a type-class-
based generic operation that can be used to implement Tock’s
generics interface.

Generics in Small Doses: Nanopass Compilation with Haskell 7 2009/3/4

6.1 Polyplate
The type class in question – called Polyplate , since it is, at least in
spirit, a generalisation of Biplate – defines a single function:

class Polyplate ops tops t where
polyplateM :: ops -> tops -> Bool -> t -> PassM t

polyplateM, like gmapMWith, applies a set of type-specific
functions to the largest subtrees of the appropriate types within a
value, behaving like return if none of the type-specific functions
match. It differs in that it takes two sets of operations: one to apply
to the current value (ops), and one to apply to children of the value
when recursing into it (tops). We will explain the additional Bool
argument shortly.

The type class is parameterised over both sets of functions and
the value type. To allow the former, we must encode the set of target
types in Haskell’s type system. The empty set of operations has the
unit type:

type BaseOp = ()

baseOp :: BaseOp
baseOp = ()

Additional types are added to the set using nested tuples:

type ExtOp op t = (Transform t, op)

extOp :: op -> Transform t -> ExtOp op t
extOp ops f = (f , ops)

There is a pleasant symmetry here between the functions used
to build the set of operations and the type constructors used to
build their types; indeed, the ExtOp type constructor can be used
infix in the same way as extOp. An operation upon Process and
Expression can therefore be defined as:

myOp :: BaseOp ‘ExtOp‘ Process ‘ExtOp‘ Expression
myOp = baseOp ‘extOp‘ doProcess ‘extOp‘ doExpression

For the following examples, we will use this simple data struc-
ture containing only two types.

data Outer = Foo Inner | Bar
data Inner = Baz | Quux

Each instance of Polyplate describes how to apply a set of
operations to a value. When the set of operations is not empty, the
behaviour of polyplateM depends on whether the current value is
a “hit”, a “through” or a “miss” for the type of the outermost type-
specific function in the set. If it is a “hit”, polyplateM just applies
the type-specific function:

instance Polyplate (Transform Inner , r) tops Inner where
polyplateM (f ,) v = f v

instance Polyplate (Transform Outer, r) tops Outer where
polyplateM (f ,) v = f v

If the value is a through or a miss, polyplateM recurses to try
the next function in the set. The Bool argument is used here to
record whether it will be necessary to descend into the children of
the value. For a “miss”, it is left alone:

instance Polyplate r tops Inner =>
Polyplate (Transform Outer, r) tops Inner where

polyplateM (, rest) topOps b v
= polyplateM rest topOps b v

For a “through”, the descent flag is forced to True:

instance Polyplate r tops Inner =>
Polyplate (Transform Inner , r) tops Outer where

polyplateM (, rest) topOps b v
= polyplateM rest topOps True v

Once the set of operations is empty, we know whether we need
to recurse into the children of the type using the topOps set of
operations. For a type such as Inner that has no children, the
instance is trivial since the behaviour is the same either way:

instance Polyplate () tops Inner where
polyplateM () v = return v

For Outer, we must look at the descent flag. If it is False , we
can return the value immediately. If it is True, then we must re-
cursively apply topOps to each of the children of each production,
then construct a new value to return.

instance Polyplate tops tops Inner =>
Polyplate () tops Outer where

polyplateM () False v = return v
polyplateM () topOps True (Foo i)
= do i ’ <- polyplateM topOps topOps False i

return (Foo i ’)
polyplateM () True Bar = return Bar

We can now define recurse and descend functions in terms of
polyplateM. recurse applies its set of operations, initialising the
descent flag to False:

makeRecurse :: Polyplate ops ops t => ops -> Transform t
makeRecurse ops = polyplateM ops ops False

Finally, descend forces immediate descent into the value given:

makeDescend :: Polyplate ops ops t => ops -> Transform t
makeDescend ops = polyplateM () ops True

6.2 Successes and Annoyances
This implementation also meets our criteria, and has excellent
performance characteristics: it is about four times faster on typical
Tock compilation runs than the type-tracking SYB implementation
– and it no longer requires any GHC extensions other than multi-
parameter type classes. There is ample opportunity for a smart
Haskell compiler to take advantage of inlining and specialisation
to further improve the performance of polyplateM.

One downside is that the types involved have become much
more complicated. The type class constraints of the recurse and
descend functions now depend on the operations involved, rather
than only requiring a Data instance for the value. While the types
can be inferred automatically for most simple passes, any pass that
applies recurse or descend to more than one type will require their
types to be explicitly specified (else GHC will infer a type that is
too specific for the first use, then complain when it does not match
the second).

The complexity can be hidden to some degree through the use
of type synonyms (with Recurse ops and Descend ops types, for
example), but it is still necessary to introduce many type constraints
that were not previously present in the code. The proposed addition
of type class synonyms to the language may simplify matters here.

As with Uniplate, the number of instances required to make a
complex data structure traversable can be very large: for a data
structure containing n types, it is necessary to define n(n + 1)
instances of Polyplate . This would be extraordinarily tedious to
do by hand – Tock needs nearly five thousand instances – but can
be readily automated if the structure of the types is known. For
Tock, we wrote a helper program that uses SYB to determine the
type relationships in the AST, and automatically generates Haskell
code to define the necessary Polyplate instances.

Generics in Small Doses: Nanopass Compilation with Haskell 8 2009/3/4

Finally, programs using Polyplate take a pathologically long
time to compile with GHC; a Haskell file of a few hundred lines
that performs a handful of generic operations may take nearly ten
minutes to compile. We presume that this is owing to the complex-
ity of the typeclass instances involved, since GHC must traverse
each possible path through the graph of typeclass dependencies for
each operation to ensure that all the necessary instances are present.

To work around this problem, we could provide – in addition
to the automatically-generated instances – an implementation of
Polyplate in terms of SYB’s Data, using the PlateData approach.
This would run more slowly but require only a couple of instances,
allowing the Tock developer to trade off Haskell compilation speed
against runtime performance.

7. Conclusion
We have used Haskell to implement a nanopass compiler for the
occam-π concurrent programming language. Our new compiler is
both flexible and maintainable: multiple frontends and backends
are supported, new language features can easily be added, and the
codebase is smaller, easier to navigate and easier to test than the
existing occam-π compiler. The use of Haskell’s powerful type
system along with test-driven development and automatic property
checking helps to prevent several common types of programmer
error during Tock development.

The compiler’s output via C and C++ is highly portable and per-
forms well; initial benchmarks suggest an eightfold performance
increase on straight-line numerical code over the existing com-
piler. Automatic stack usage analysis makes it possible to run
very large numbers of lightweight processes with minimal mem-
ory overheads.

We have defined an interface for generic operations that can
be used to construct various types of generic transformations and
checks across a complex AST, supporting operations upon multiple
target types. We have shown how this interface can be implemented
using approaches based upon both “Scrap Your Boilerplate” (with
run-time typing) and Uniplate (with automatically-generated type
class instances). The efficiency of these implementations allows
large numbers of nanopasses to be applied to data structures con-
taining millions of nodes without adversely affecting the perfor-
mance of the compiler.

Tock is open source software, and its components are freely
available for reuse in other projects. The source code and more
details are available from http://offog.org/tock.

Acknowledgments
Our work on Tock is supported by EPSRC grants EP/P50029X/1
and EP/E049419/1. The authors would like to thank Matt Jadud for
enthusing them about nanopass compilation, and Tom Shackell for
suggesting the use of Uniplate.

References
Neil C. C. Brown. Rain: A New Concurrent Process-Oriented Programming

Language. In Communicating Process Architectures 2006, pages 237–
251, September 2006. ISBN 1-58603-671-8.

Mark P. Jones. Functional Programming with Overloading and Higher-
Order Polymorphism. In First International Spring School on Ad-
vanced Functional Programming Techniques, pages 97–136, London,
UK, 1995. Springer-Verlag. ISBN 3-540-59451-5.

R. Lämmel and J. Visser. Typed Combinators for Generic Traversal. In
Proc. Practical Aspects of Declarative Programming PADL 2002, vol-
ume 2257 of LNCS, pages 137–154. Springer-Verlag, January 2002.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. In TLDI, pages 26–37, 2003.

Daan Leijen and Erik Meijer. Parsec: A Practical Parser Library. In ACM
SIGPLAN Haskell Workshop, 2001.

Neil Mitchell and Colin Runciman. Uniform boilerplate and list processing.
In Haskell ’07: Proceedings of the ACM SIGPLAN workshop on Haskell
workshop, pages 49–60, New York, NY, USA, 2007. ACM. ISBN 978-
1-59593-674-5. doi: http://doi.acm.org/10.1145/1291201.1291208.

Alexey Rodriguez, Johan Jeuring, Patrik Jansson, Alex Gerdes, Oleg Kise-
lyov, and Bruno C.d.S. Oliveira. Comparing Libraries for Generic Pro-
gramming in Haskell. 2008. To appear.

Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig. A na-
nopass infrastructure for compiler education. In ICFP 2004,
pages 201–212. ACM Press, 2004. ISBN 1-58113-905-5. doi:
http://doi.acm.org/10.1145/1016850.1016878.

Peter H. Welch and Fred R. M. Barnes. Communicating Mobile Pro-
cesses: introducing occam-pi. In 25 Years of CSP, volume 3525 of Lec-
ture Notes in Computer Science, pages 175–210. Springer Verlag, April
2005. ISBN 3-540-25813-2.

Noel Winstanley. Reflections on instance derivation. In 1997 Glasgow
Workshop on Functional Programming. BCS Workshops in Computer
Science, September 1997.

Generics in Small Doses: Nanopass Compilation with Haskell 9 2009/3/4

