1	Macrophage transactivation for chemokine production identified as a negative
2	regulator of granulomatous inflammation using agent-based modeling.
3	
4	Daniel Moyo ^{1,2} , Lynette Beattie ^{1*} , Paul S Andrews ³ , John W J Moore ¹ , Jon Timmis ³ ,
5	Amy Sawtell ¹ , Stefan Hoehme ⁴ , Adam T. Sampson ⁵ , Paul M Kaye ¹
6	
7	^{1.} Centre for Immunology and Infection, Department of Biology and Hull York
8	Medical School, University of York, UK.
9	^{2.} Department of Computer Science, University of York, UK.
10	^{3.} Department of Electronics, University of York, UK and SimOmics Ltd, York. U.K.
11	⁴ Institute for Computer Science, University of Leipzig, Germany
12	⁵ Division of Computing and Mathematics, Abertay University, Dundee, UK.
13	
14	*Current address: Doherty Institute, University of Melbourne, Australia.
15	Key words: Kupffer cells; granulomas; inflammation; Leishmania; NKT cells;
16	agent-based modeling; computational immunology; liver

18 Abstract

19 Cellular activation *in trans* by interferons, cytokines and chemokines is a commonly 20 recognized mechanism to amplify immune effector function and limit pathogen 21 spread. However, an optimal host response also requires that collateral damage 22 associated with inflammation is limited. This may be particularly so in the case of 23 granulomatous inflammation, where an excessive number and / or excessively florid 24 granulomas can have significant pathological consequences. Here, we have combined 25 transcriptomics, agent-based modeling and *in vivo* experimental approaches to study 26 constraints on hepatic granuloma formation in a murine model of experimental 27 leishmaniasis. We demonstrate that chemokine production by non-infected Kupffer 28 cells in the Leishmania donovani-infected liver promotes competition with infected 29 KCs for available iNKT cells, ultimately inhibiting the extent of granulomatous 30 inflammation. We propose trans-activation for chemokine production as a novel 31 broadly applicable mechanism that may operate early in infection to limit excessive 32 focal inflammation.

33

35 Introduction

36 Immune responses are commonly initiated by localized infectious insult and multiple 37 mechanisms have evolved to allow spread of host effector responses to meet the 38 challenge of pathogen containment. In the late 1950's, seminal studies by Isaacs and 39 Lindenmann defined how "interferons' amplified local cellular resistance following 40 virus infection [1, 2]. A decade later, Mackaness described cross protective cellular 41 immunity mediated via T cell cytokine-dependent macrophage activation [3]. More 42 recently, cytokine-and chemokine- mediated amplification of host protective 43 immunity has been described across a spectrum of responses driven by both innate 44 lymphoid cells and via conventional T cells [4-9]. Whilst serving to eliminate 45 pathogens more effectively, a potentially undesirable consequence of amplifying 46 immune effector responses is immunopathology, collateral damage induced by an 47 over-zealous drive towards inflammation. Hence, an equally impressive array of "regulatory" or "suppressive" mechanisms have been defined that serve to limit 48 49 immunopathology, and that suggest an evolutionary balance between pathogen 50 elimination and host survival [10-12].

51

Granulomatous inflammation represents an extreme form of focal inflammation, often initiated around pathogens or foreign bodies that pose a formidable challenge for immune clearance. Granulomas are a hallmark of the immunopathology of many human infectious diseases including tuberculosis [13, 14], schistosomiasis [15]and leishmaniasis [16]. Whilst granuloma formation may provide means for containment and be host beneficial, excessive granuloma formation, numerically or in terms of individual granuloma size can lead to severe pathological consequences. Hence,

mechanisms for limiting the exuberance of the granulomatous response through late
acting regulatory pathways are also well described in the literature [17-20]. However,
the question of whether additional regulatory mechanisms operate at the earliest
stages of granuloma initiation and prevent or limit over-exuberant granuloma
formation has not been previously addressed.

64

65 Experimental visceral leishmaniasis, resulting from infection of mice with the Kupffer 66 cell (KC) tropic parasite Leishmania donovani, has provided a highly tractable tool to 67 study the initiation of granulomatous pathology in the hepatic microenvironment. 68 Following infection of mice with L. donovani, infected KCs transiently release the 69 chemokines CCL1, CCL2 and CXCL10 in a T cell-independent manner, whereas 70 sustained expression of CXCL10 is dependent upon IFNy production by invariant 71 NKT (iNKT) cells [21]. IFNy production by iNKT cells is in turn costimulated by 72 ligation of CD47 on NKT cells by signal regulatory protein alpha (SIRPa) expressed 73 on KCs, providing positive feedback for sustained iNKT cell recruitment and KC 74 activation [22]. A similar role for CXC chemokines in recruiting hepatic NKT cells 75 has been observed in other models of liver infection / inflammation [23, 24]. For 76 example, CXCL9 produced by KCs following infection with the bacterium Borrelia 77 burgdorferi results in CXCR3-dependent clustering of NKT cells around infected KCs [25] whereas CXCR6 and its ligand CXCL16 regulate NKT cell accumulation in 78 79 the liver during fibrosis [26]. Hence, early recruitment of "amplifier" cells such as 80 NKT cells is a central and common theme of focal inflammation.

82 Examination of the kinetics of granulomatous inflammation in this model of visceral 83 leishmaniasis suggests, however, that there may be inherent limitations imposed on 84 the ability of the host to form hepatic granulomas. Notably, granuloma formation 85 proceeds asynchronously, and even many weeks after infection, fully formed 86 granulomas sit side by side with infected KCs that appear to have failed to stimulate 87 an inflammatory focus [16, 27]. Here, we have combined transcriptional profiling 88 and computational modeling to probe possible mechanisms that might underpin the 89 asynchronous development of granulomas in this model. We demonstrate that KC 90 chemokine production, contrary to expectations, is not restricted to infected cells 91 alone, but spreads in trans to include uninfected KCs within the infected liver. Data 92 generated using a novel agent based model (ABM) in which KCs and iNKT cells 93 interact within a spatially constrained sinusoidal network suggest that the spreading of 94 chemokine production to uninfected KCs limits the competitiveness of infected KCs 95 in terms of their ability to attract iNKT cells and initiate granuloma formation. In 96 silico experiments predicted that this competition could be overcome by increasing 97 the number of available NKT cells, a prediction borne out in vivo. Hence, our data 98 identify a new pathway that operates early in infection to limit excessive 99 inflammation by introducing competition for a finite resource (i.e. iNKT cells) that is 100 needed for granuloma initiation.

101

102 Materials and Methods

103 *Mice and parasites.*

104 C57BL6 mice were obtained from Charles River (UK). mT/mG [28] and LysMcre

105 [29] mice have been previously described. Mice were bred and housed under specific

106 pathogen-free conditions and used at 6-12 weeks of age. The tandom Tomato 107 fluorescent protein expressing Ethiopian strain of *Leishmania donovani* (tdTom.LV9) [30] were maintained by serial passage in $Rag I^{-/-}$ mice. Amastigotes were isolated 108 from infected spleens, and mice were infected with $3 \times 10^7 L$. donovani amastigotes 109 110 intravenously (i.v.) via the tail vein in 200µl of RPMI 1640 (GIBCO, UK). All 111 animal procedures were approved by the University of York Animal Welfare and 112 Ethical Review Board and carried out in accordance with UK Home Office license 113 (PPL 60/4377).

114

115 Microarray analysis

116 As previously described [31], Kupffer cells were flow sorted (on the basis of SSC/FSC and expression of CRIg, Gr-1 and F4/80) from naive mice and from 117 118 infected mice and KCs from infected mice were further sorted (on the basis of 119 TdTomato expression) into those containing amastigotes ("infected") and those that 120 did not ("inflamed"). A total of 64 mice were used in the microarry study, in four 121 independent infection experiments. RNA was isolated, amplified and equal amounts were assayed using Agilent SurePrint G3 Gene Expression 8x60 Microarray chips. 122 Scanned data were normalized (80th percentile) and gene expression data analysed 123 124 using Genespring v9. Differentially expressed (DE) genes were defined using a false 125 discovery rate (FDR) of 5%. Source data is accessible from EBI Array Express (E-126 MEXP-3877) and methodology for subsequent data analysis is described in further 127 detail elsewhere [31].

129 *Histological Analysis.*

130 Mice were treated with 1µg recombinant IL-15 (BioLegend) intravenously and 131 infected 3 days later. Four days post-infection, mice livers were extracted, weighed 132 then placed into 2% PFA in PBS for 2 hours, then 30% sucrose in PBS overnight. 133 Tissues were then embedded in Optimal Cutting Temperature (OCT)(Sakura) and 134 stored at -70°C until use. 10µm cryosections were fixed and labeled with Alexa647 or 135 Alexa488 conjugated F4/80 (eBioscience) and DAPI (Invitrogen) to visualize KCs and cell nuclei respectively. Images were captured as 0.81µm optical slices using a 136 137 LSM510 confocal microscope (Zeiss). Blinded slides were imaged to score the percentage of infected foci having formed a distinct inflammatory focus (greater than 138 139 15 cells), with imaging fields selected via tdTomato expression.

140

141 Flow Cytometry.

Livers were homogenized and mononuclear cells prepared as previously described
[30]. Cells were incubated with anti-CD16/32 and then labeled with NK1.1, CD3,
B220 and CD1d tetramer (a kind gift from V. Cerundulo) to identify T, NK and NKT
cells. Samples were analyzed using a CyAn flow cytometer with Summit software
(DAKO). Autofluorescent events and dead cells were excluded from analysis by
gating on unused fluorescent channels and LIVE/DEAD fixable dead cell stain
(Invitrogen) respectively.

149

150 *Parameterizing and Calibrating the Simulation.*

A full summary of the biological data available that was used to calibrate the
simulation is listed in **Table S1**. The entire list of baseline simulation parameters is
found in **Tables S3**. Full details of parameterization and calibration of the simulation

are provided in the **Supplemental Experimental Procedures**.

155

156 Statistical Analysis.

157 When quantifying granulomas, experimental data are expressed as mean \pm SEM for 158 each group of 5 mice from two independent experiments, and statistical analyses 159 performed using two-tailed paired Student t-tests. All tests used 95% confidence 160 intervals. Simulation data non-normality was determined using the D'Agostino and 161 Pearson test, and non-normal simulation data was analyzed using either Wilcoxon 162 signed-rank or Kolmogorov-Smirnov tests where appropriate. Aleatory analysis was 163 used to determine the minimum number of simulation results required to mitigate 164 stochastic uncertainty (see Figure S4). Latin-hypercube sensitivity analysis was 165 facilitated by using the Spartan tool for understanding uncertainty in simulations [32].

166

167 **Results**

168 Chemokine production by KCs in mice infected with L. donovani

169 Both chemokines and iNKT cells are central to the initiation of granulomatous

- 170 inflammation following L. donovani infection. In order to gain insight into the
- 171 production of chemokines involved in KC-directed recruitment of NKT cells, we used
- transcriptional profiling of KCs isolated from mice infected with L. donovani as

173	previously described [31]. Following infection of mice with Td-tomato transgenic L.
174	donovani, approx. 20% of the KC population are infected with amastigotes. We
175	isolated KCs from infected mice and sort purified these KCs on the basis of whether
176	they contained intracellular amastigotes ("infected") or not (herein referred to as
177	"inflamed" to denote their exposure to inflammatory signals in vivo) [31]. As shown
178	in Figure 1A, KCs from infected mice expressed a variety of chemokines when
179	compared to KCs isolated from naïve mice. At 2h post infection (p.i.), enhanced
180	accumulation of mRNAs for Cxcl1, Cxcl2, Cxcl3 and Cxcl5, as well as Ccl3 and Ccl4,
181	was evident (determined as differentially expressed using a 5% FDR). This
182	transcriptional response was transient, in keeping with previous studies at the level of
183	whole liver tissue [21]. Rapid secretion of chemokines in response to L. donovani
184	infection can also be inferred from studies in which G-protein coupled receptor
185	signaling was abrogated by pertussis toxin [22]. A suite of inducible chemokines,
186	including Cxcl9, Cxcl10, Ccl8 and Ccl12 showed enhanced mRNA accumulation at
187	12h p.i. (at a 5% FDR), again in keeping with data in whole liver and with previously
188	published data indicating the production of IFN γ by iNKT cells during early L.
189	donovani infection (e.g. Figure 2 in reference 22). For example, qRT-PCR
190	demonstrated sustained and elevated Cxcl10 at 24h p.i. [33]. Similarly,
191	transcriptional profiling of the livers of infected BALB/c mice (n=4-5 per time point)
192	indicates sustained elevation of Cxcl9 (Log ₂ FC compared to controls of 5.25, 5.14,
193	5.34 and 4.74 for days 15, 21, 36 and 42 p.i. respectively; FDR 0.05, p<0.05) and
194	Cxcl10 (Log ₂ FC of 4.84, 4.92, 5.36 and 4.55, respectively; Ashwin et al, manuscript
195	in preparation). Strikingly, there was little difference to discriminate the chemokine
196	response of infected vs. inflamed KCs, although we cannot rule out different degrees
197	of post transcriptional regulation of chemokine secretion in infected vs. inflamed KCs

198 [34]. Collectively, our data suggest that although initiated by infection, production ofchemokines rapidly spreads in trans throughout the liver KC network.

200

201	Chemokine induction by infected cells is thought to provide a means for focal
202	inflammation, the recruitment of additional leucocytes in an ordered manner being
203	essential for granuloma formation and the ultimate activation of macrophage host
204	defense mechanisms. However, given this argument, these data appear
205	counterintuitive. In order to try to understand how transactivation for chemokine
206	production might influence the generation of focal inflammation, and given the
207	absence of tools to selectively and directly manipulate chemokine production by
208	infected vs. uninfected KCs in vivo, we adopted an in silico experimental approach
209	conducive to testing a variety of different hypotheses (Figure 1B and C).

210

211 An agent-based model of the hepatic sinusoidal microenvironment.

212 Agent based models, where rule-driven "agents" can represent a cell or lower-scale 213 entities of interest, are naturally suited to simulating inflammation in a spatially 214 constrained environment [35-37]. To construct this environment, we used published 215 3D data describing the overall size of lobules, the average non-branched sinusoid 216 length, and the branching angles between sinusoids [38] as the basis for developing a 217 novel algorithm to generate statistically realistic liver lobule sections similar to that 218 reported recently [39]. A range of quasi-2D sinusoidal network structures, where 219 each structure can be considered as a slice through a 3D lobule, was created using a 220 multi-stage generative algorithm augmented with these data [38] (Figure 2A, Movie

221 S1, Figure S1A-D and Table S1 and Supplementary Experimental Procedures).

The resulting networks (Figure 2B), represented as graphs of nodes connected by
edges, serve as discrete spatial simulation environments that mimic the sinusoidal
structure observed in live mice imaged by 2-photon intra-vital microscopy in (mT/mG
x lysMcre)_{F1}, as previously described [30] (Figure 2A vs. 2C). Analysis (by Pearson
correlation coefficients and Kolmogorov-Smirnov tests) using 10 independently
generated structures indicated that variance in structure *per se* had minimal impact on
the results of subsequent simulations (see below).

229

230 We defined where and how cellular interactions were allowed to occur within our 231 simulation environment based on 3 different types of network node: periportal nodes, 232 located at the peripheries of the structure allow NKT cells to enter and exit the 233 simulated lobule section; regular-nodes, capable of holding a single KC and any 234 number of NKT cells; and a single centrilobular-node, representing the central vein 235 where NKT cells could exit the structure. Only NKT cells were capable of movement 236 within the structure. KCs remain immobile, as reported in early stages of infection 237 with B. bugdorferi [25], BCG [40] and L. donovani [30]. Our KC placement 238 algorithm distributes KCs in periportal, midzonal and centrilobular locations in a ratio 239 of 4:3:3, based on [41, 42]. As centrilobular KCs have reduced phagocytic capability 240 compared to periportal KCs [41], the distribution of infected KCs in our simulation is 241 65% periportal, 25% midzonal and 10% centrilobular for the purposes of 242 experimentation.

243

244 A detailed description of the model and key assumptions is provided in the 245 Supplemental Experimental Procedures and Tables S2 and S3. State diagrams 246 written in the Unified Modeling Language that illustrate the behaviour associated with 247 KCs and NKT cells are provided in Figure S2. Briefly, mechanisms of cellular attraction and retention were modeled generically, since the precise function, 248 249 functional overlap, and interaction between distinct chemokines has yet to be fully 250 elucidated. For the purposes of the current abstraction, we refer to the chemokines as 251 attractive and retentive, being independent and quantitatively distinct and with 252 discrete areas of influence. The simulation was constructed to allow both a minimum 253 and a maximum diffusion distance to be parameterized for all chemo-attractants 254 produced by KCs. NKT cells traverse the sinusoidal network at 10-20µm/min with a 255 random walk behavior [25], with no enforcement of directionality unless under the 256 attractive influence of KC-derived chemokines. Strength of attraction is modeled as a 257 function of distance from the source KC. Upon interaction with infected KCs, NKT 258 cells produce IFNy (as a representation of all macrophage-activating cytokines) 259 following cognate receptor engagement [22], facilitating KC activation and NKT cell 260 arrest [25, 43]. Our previous data on SIRP α -CD47 has suggested that cognate 261 receptor-ligand interactions also regulate NKT cell retention on infected KCs, with 262 the induced expression of SIRPa after infection being preferentially but not 263 exclusively observed on infected KCs [22]. In our model, this interaction is used to 264 represent a cognate retention signal, but this reflects an abstraction of what may be 265 potentially much more complex interactions. The amplification of KC derived 266 attractive chemokines through this process can lead to the accumulation of multiple 267 NKT cells at a given KC (referred to here as "inflammatory foci"). It is assumed that 268 through the sum of all KC-NKT cell interactions within an inflammatory focus, a

threshold for granuloma formation and the subsequent recruitment of additional

270 leucocytes associated with maturing granulomas (including B cells, T cells,

271 monocytes and NK cells) is reached, but these cells and processes are not explicitly

272 modeled. We have also not modeled the ultimate microbicidal activity of these

273 granulomas.

274

275 Parasite Induced Activation of Infected KCs with/without Bystander Chemokine
276 production by Uninfected KCs.

277 Two experimental scenarios were devised to investigate the influence of varying both 278 infected and inflamed KC function. Scenario 1 (Figure 1B) was constructed to restrict 279 chemokine production to infected KCs only, and scenario 2 (Figure 1C) to 280 investigate the impact of transactivation of KC for chemokine production. As KC 281 activation of NKT cells is optimal in the presence of cognate interactions [22], our 282 model assumes these are a requirement for retention; hence only infected KCs can 283 generate stable inflammatory foci, and these foci, for the purposes of the model, are 284 composed only of NKT cells and KCs. In contrast, inflamed KCs in scenario 2 might 285 act as potential competitors for available NKT cells, being able to attract but not 286 retain them. Although this model can be used to probe a variety of different potential 287 questions related to the initiation of granuloma formation (see Discussion), we focus 288 here on a factorial analysis that involved simultaneously modifying the simulation 289 parameters related to chemokine diffusion distance, time required to activate KCs, 290 and time for KCs to reach maximal chemokine production.

291

292	Firstly, we quantified the influence of distance from effect on attraction. Factorial
293	analysis, modifying the maximum diffusion distance of chemokine, showed that
294	greater chemokine diffusion distance leads to increased percentages of infected KCs
295	forming inflammatory foci in both scenarios (Figure 1B and C), whether those foci
296	were qualified as containing 4, 6 or 8 NKT cells. However, our simulation predicted
297	diminishing returns when increasing maximum diffusion past ~120 μ m (Figure S1E).
298	Thus, significant differences ($P=\leq 0.001$) were observed when comparing the
299	frequency of inflammatory foci that resulted from each increase in diffusion distance
300	against the previous distance (e.g. 20µm-30µm: P=0.001216, 30µm-40µm:
301	P=0.000019). However, when increasing from 120μ m- 130μ m and beyond, the
302	increase in inflammatory foci was not significant (P=0.312). Interestingly, this tipping
303	point is close to the $\sim 100 \mu m$ reported as the distance of a functional chemokine
304	gradient in vivo [44]. These results suggest that if it were possible to selectively
305	increase chemokine diffusion via increased production (or other means) by infected
306	KCs compared to inflamed KCs, or conversely decrease chemokine diffusion by
307	inflamed KCs, infected KCs would gain competitive advantage in terms of attracting
308	NKT cells.

309

We next compared our two experimental scenarios in terms of total stimulation time (i.e. a measure of activation) received by the entire infected KC population, and the frequency of inflammatory foci formed associated with that population. **Figure 3A** illustrates a response curve for scenario 1 showing the total stimulation time received by all infected KCs, across a range of the two main parameters that determine KC activation dynamics – the time required to activate KCs and the duration KCs remain

activated. When comparing this response landscape of scenario 1 with that generated
in scenario 2 (Figure 3C), there was a marked reduction in stimulation time received
overall by infected KCs in scenario 2 compared to scenario 1. This trend is also
observable when comparing the percentage of inflammatory foci, whether qualified at
8 NKT cells (Figure 3B for scenario 1 and Figure 3D for scenario 2) or at 4 or 6
NKT cells (data not shown).

322

323 Together, these results demonstrate that in comparison to chemokine production 324 restricted to infected KCs, additional chemokine production by inflamed KC 325 generates a less focused inflammatory response, measured either by frequency of 326 infected KC that form inflammatory foci, or by stimulation time received by infected 327 KCs. This result most likely reflects the liver lobule becoming saturated with 328 attractive chemokines derived from both inflamed and infected KCs in scenario 2, 329 reducing the competitiveness of infected KCs to selectively recruit NKT cells. In 330 other words, chemokine production by inflamed KC acts in a negative immune regulatory manner, limiting the extent of the inflammatory response around infected 331 332 KCs.

333

334 Increasing NKT Cell Numbers Overcomes Bystander Regulation.

335 We then investigated how modifying the target of this competition affected the

336 quantity and quality of inflammatory foci generated. We hypothesized that altering

337 NKT cell frequency might result in either i) similarly abundant foci, but with each

being more substantive in terms of NKT cellularity, or ii) increased numbers of

339	inflammatory foci, thus overcoming the competitive effect of bystander chemokine
340	production by inflamed KCs (Figure 4A). Our simulation results showed that
341	increasing NKT cell numbers above the calibrated value lead to significant increases
342	in the frequency of inflammatory foci in scenario 1, a result that would be expected.
343	Strikingly, an increase in frequency of inflammatory foci was also observed to be the
344	case for scenario 2, regardless of how we qualified focus size (Figure 4B). For
345	example, with an increase in NKT cell availability of 2-fold, the number of
346	inflammatory foci increased 1.5-fold, whereas increasing NKT cells by 3-fold
347	doubled the frequency of inflammatory foci.

348

349 To test whether this predictive in silico data was also borne out in vivo, we treated 350 mice for 3 days with recombinant IL-15 to induce increased NKT cell proliferation 351 and survival [45] and then infected these mice with L. donovani and scored early 352 granuloma formation. In uninfected mice, IL-15 treatment resulted in increased 353 numbers of NKT cells (including CD1d restricted NKT cells), NK cells, and T cells 354 (Figure 4C-E and Figure S3A-D). In infected mice, all cell types were already 355 increased in number compared to naïve mice, and the effect of IL-15 pre-treatment 356 was limited to an increase in the number of NKT cells (Figure 4C). Similarly, IL-15 357 pre-treatment had no effect on the relative frequency of NK cells and T cells (Figure 358 S3B-C) but resulted in an increase in the relative frequency of NKT cells (from 15.0 359 $\pm 0.1\%$ to 17.36 $\pm 0.8\%$; n=10; P=0.0043; Figure S3E).

360

361 To ensure that we were scoring a biologically relevant histopathological response, 362 whilst minimizing potential longer terms effects of rIL-15 treatment, we chose to

363	score the granulomas early in their development (day 4 p.i.) and define these as
364	accumulations of 15 or more cells formed around an infected KC (not discriminating
365	between NKT cells or other mononuclear cells). Although there was significant
366	heterogeneity in size of these granulomas (Figure 4G-H), we found that the
367	frequency of infected KCs that formed distinct granulomas was increased ~ 1.5 fold in
368	mice pre-treated with IL-15 and which had a higher number of NKT cells in the liver
369	at the time of infection (P=0.0038; Figure 4F). Thus, treatment of mice with rIL-15,
370	even under conditions where the increase in NKT cell number is relatively modest,
371	leads to a significant enhancement in the frequency of infected KCs that can provide a
372	nidus for granuloma formation.

373

Discussion

375	Granulomas represent a specialized form of inflammation that allows for the focal

delivery of host effector responses and / or containment of pathogen products.

377 Whilst generally considered host beneficial, excessive granuloma formation may have

378 significant pathological consequences. Here, we provide evidence that chemokine-

dependent competition between infected and uninfected KCs for iNKT cells in the

380 hepatic microenvironment acts as a natural attenuator of granuloma formation.

381

382 In models of experimental visceral leishmaniasis, granuloma formation is

asynchronous, limiting the extent of hepatic inflammation, but also delaying parasite

384 clearance [16, 27]. A variety of different models could explain why isolated infected

385 KCs can be found at times when other infected KCs are engaged in a fully mature

386 granulomatous response. In a model of Mycobacterium marinarum-induced 387 granulomas in zebrafish, macrophage migration out of the granuloma has been 388 observed [14, 46], and it is possible that infected KCs leave granulomas in mice 389 infected with L. donovani. However, in both L. donovani-induced granulomas [30] 390 and BCG-induced granulomas [40, 47] in immunocompetent mice, KCs appear to 391 retain their characteristic lack of motility. Alternatively, there may be heterogeneity 392 in KCs, a subset being more efficient in promoting granulomatous inflammation. 393 Although we had previously modeled this possibility using an early version of our 394 ABM [48], our recent studies evaluating differences between yolk-sac derived and 395 bone marrow-derived KC indicate that both are competent to form granulomas and 396 participate effectively in this response [49]. A further possibility is that granuloma 397 formation is rate limited by the availability of key amplifier cells. Experimental data 398 to date indicates that iNKT cells play this role in experimental visceral leishmaniasis 399 [22, 33, 50, 51], though we do not discount a role for other more recently identified 400 innate lymphoid cells [52, 53].

401

402 Through transcriptional profiling, we demonstrated that both inflamed and infected 403 KCs produce a variety of inducible chemokines able to attract NKT cells, suggesting 404 the possibility that uninfected as well as infected KCs could compete for this 405 resource. However, as neither the mechanisms that regulate this transactivation nor 406 experimental means to selectively regulate chemokine production by KCs are 407 currently available, we adopted a computational approach to further explore this 408 hypothesis. ABMs are well-suited towards studying tissue and cellular level 409 inflammation [35-37]. In constructing our ABM, we developed a novel algorithm for

410 creating virtual sinusoidal networks that are visually representative of liver lobule 411 sections, being defined by published statistics that captured the length between central 412 vein and portal triad, average lengths of non-branched sinusoids and sinusoid branch 413 angles [38]. This represents an improvement on similar work [39]. Our algorithm was 414 not intended to produce a fully realistic whole lobule structure, but rather we were 415 interested only in developing suitable quasi-2D vascular networks within liver lobules 416 to provide an environment for the cellular and chemokine "agents" contained in the 417 model. Similarly, whilst our ABM contained only three cellular agents (infected and 418 inflamed KCs and NKT), this abstraction was nevertheless sufficient to probe 419 previously inaccessible aspects of the underlying biology.

420

421 Our *in silico* results predicted that chemokine diffusion plays an important role in 422 regulating the formation of inflammatory foci around infected KCs, though there are 423 diminishing returns as a result of increased competition when lobules become flooded 424 with chemokines. Subsequently, our model predicted an intuitive, but nonetheless 425 previously unreported mechanism by which the production of NKT cell-attractive 426 chemokines by inflamed KCs dampens the overall inflammatory response in the liver 427 microenvironment, reducing the activation received by infected KCs. Our in silico 428 data also predicted that this competition could be overcome by increasing the 429 availability of NKT cells, and we were able to confirm that granuloma frequency can 430 indeed be increased in vivo by increasing NKT cell numbers using rIL-15. The 431 relationship between availability of NKT cells and an increase in the frequency of 432 infected KCs generating granulomas has not previously been demonstrated.

433

434 Natural killer T (NKT) cells represent a potent therapeutic target in a variety of 435 clinical settings, due to their immune adjuvant function and production of various 436 effector cytokines [54-57]. Protective immunity associated with NKT cell activation 437 has been reported in several disease settings. For example, Va14 NKT cells activated 438 by α -galactosylceramide (α -GalCer) have been shown to inhibit the development of 439 malaria parasites in mice [58]. Similarly, in a murine model of Mycobacterium 440 tuberculosis infection, a-GalCer induced activation of NKT cells was associated with 441 reduced bacterial loads, tissue injury, and improved mouse survival [59]. Conversely, 442 NKT cells have been implicated as key drivers of liver inflammation such as chronic 443 liver injury [26]. Although our results suggest that in leishmaniasis the initiation of 444 granulomatous inflammation can be enhanced by increasing the availability of NKT 445 cells, further long-term studies would be required to determine whether the host 446 protective advantages of this intervention outweigh any possible pathological 447 consequences.

448

449 It is important to recognize that our model has been developed to address early events 450 in granuloma formation and does not take into account the potential for diversity in 451 granuloma form and function, including variations in microbicidal activity. These 452 may be regulated via other aspects of the immune response that develop over time, 453 and more complex models have been developed to address some of these issues [60]. 454 Redundancy of immune regulatory pathways is a common finding and it is possible 455 that other mechanisms come into play at later stages of granuloma evolution that 456 affects the ability of Kupffer cells to recruit inflammatory cells and initiate granuloma 457 formation. The kinetics of chemokine production is also likely to be highly dynamic,

458	though in respect of	CXCL9 and CXCL10,	long term	transcriptomic	profiling
			- 0		

459 indicates that expression of these IFNγ-inducible chemokines is sustained for at least

- 460 45 days post infection (Ashwin et. al., unpublished).
- 461 In summary, our data argue that chemokine production by uninfected trans-activated
- 462 KCs provides an example of a novel negative regulatory mechanism to limit the
- 463 impact of over-zealous inflammatory responses that might otherwise lead to excess
- tissue pathology. Further studies to evaluate this hypothesis in a broader context of
- 465 inflammation are clearly warranted.

466

467 Acknowledgements

- 468 This work was supported by grants from The Wellcome Trust and the British Medical
- 469 Research Council (to PMK), and the Engineering and Physical Science Research
- 470 Council (to JT and PSA). JT is partly funded by the Royal Society. The authors thank
- 471 Vincenzo Cerundolo for providing the CD1d tetramers.

472

- 473 Author conflict of interest statement
- 474 JT is Director of SimOmics Ltd; PSA is employed by SimOmics Ltd; all other authors
- 475 declare no conflict of interest.

476

477 Author Contributions

- 478 DM, PSA, JT, LB and PMK designed the simulation model. DM implemented the
- simulation model. LB and PMK designed the experimental study. DM, JWM, LB and
- 480 AS performed experimental studies. SH provided data and input on model

- 481 development. PSA and ATS designed and implemented the algorithm for the
- 482 generation of the artificial sinusoid structures. DM, LB, PSA, JT and PMK analyzed
- the data and wrote the manuscript.

484 485	References				
485 486	1.	Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc			
487	Lond I	ond B Biol Sci. 1957;147(927):258-67. Epub 1957/09/12. PubMed PMID:			
488	13465	720.			
489	2.	Isaacs A, Lindenmann J, Valentine RC. Virus interference. II. Some properties			
490	of inte	rferon. Proc R Soc Lond B Biol Sci. 1957;147(927):268-73. Epub 1957/09/12.			
491	PubMed PMID: 13465721.				
492	3.	Mackaness GB. The influence of immunologically committed lymphoid cells			
493	on ma	crophage activity in vivo. J Exp Med. 1969;129(5):973-92. Epub 1969/05/01.			
494	PubMe	ed PMID: 4976110; PubMed Central PMCID: PMCPMC2138649.			
495	4.	Chu T, Tyznik AJ, Roepke S, Berkley AM, Woodward-Davis A, Pattacini L,			
496	et al. E	Bystander-activated memory CD8 T cells control early pathogen load in an			
497	innate-	like, NKG2D-dependent manner. Cell Rep. 2013;3(3):701-8. Epub			
498	2013/0	03/26. doi: 10.1016/j.celrep.2013.02.020. PubMed PMID: 23523350; PubMed			
499	Centra	I PMCID: PMCPMC3628815.			
500	5.	Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors:			
501	positio	oning cells for host defense and immunity. Annu Rev Immunol. 2014;32:659-			
502	702. E	pub 2014/03/25. doi: 10.1146/annurev-immunol-032713-120145. PubMed			
503	PMID	: 24655300.			
504	6.	Lertmemongkolchai G, Cai G, Hunter CA, Bancroft GJ. Bystander activation			
505	of CD	8+ T cells contributes to the rapid production of IFN-gamma in response to			
506	bacteri	al pathogens. J Immunol. 2001;166(2):1097-105. Epub 2001/01/06. PubMed			
507	PMID	: 11145690.			
508	7.	Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The			
509	chemo	kine system in diverse forms of macrophage activation and polarization. Trends			

510 Immunol. 2004;25(12):677-86. Epub 2004/11/09. doi: 10.1016/j.it.2004.09.015.

511 PubMed PMID: 15530839.

- 512 8. Polley R, Sanos SL, Prickett S, Haque A, Kaye PM. Chronic Leishmania
- 513 donovani infection promotes bystander CD8+-T-cell expansion and heterologous
- 514 immunity. Infect Immun. 2005;73(12):7996-8001. Epub 2005/11/22. doi:
- 515 10.1128/IAI.73.12.7996-8001.2005. PubMed PMID: 16299292; PubMed Central
- 516 PMCID: PMCPMC1307086.
- 517 9. Tough DF, Borrow P, Sprent J. Induction of bystander T cell proliferation by
- viruses and type I interferon in vivo. Science. 1996;272(5270):1947-50. Epub
- 519 1996/06/28. PubMed PMID: 8658169.
- 520 10. Graham AL, Allen JE, Read AF. Evolutionary causes and consequences of

521 immunopathology. Annual review of Ecology, Evolution and Systematics.

522 2005;36:373-97. doi: 10.1146/annurev.ecolsys.36.102003.152622.

- 523 11. Mills KH. Regulatory T cells: friend or foe in immunity to infection? Nat Rev
- 524 Immunol. 2004;4(11):841-55. Epub 2004/11/02. doi: 10.1038/nri1485. PubMed
- 525 PMID: 15516964.
- 526 12. Sorci G, Cornet S, Faivre B. Immune evasion, immunopathology and the
- regulation of the immune system. Pathogens. 2013;2(1):71-91. Epub 2013/01/01. doi:
- 528 10.3390/pathogens2010071. PubMed PMID: 25436882; PubMed Central PMCID:
- 529 PMCPMC4235712.
- 530 13. Dorhoi A, Kaufmann SH. Perspectives on host adaptation in response to
- 531 Mycobacterium tuberculosis: modulation of inflammation. Semin Immunol.
- 532 2014;26(6):533-42. Epub 2014/12/03. doi: 10.1016/j.smim.2014.10.002. PubMed
- 533 PMID: 25453228.

- 534 14. Pagan AJ, Ramakrishnan L. Immunity and Immunopathology in the
- 535 Tuberculous Granuloma. Cold Spring Harbor perspectives in medicine. 2015;5(9).

536 doi: doi: 10.1101/cshperspect.a018499. .

- 537 15. Hams E, Aviello G, Fallon PG. The schistosoma granuloma: friend or foe?
- 538 Front Immunol. 2013;4:89. Epub 2013/04/19. doi: 10.3389/fimmu.2013.00089.
- 539 PubMed PMID: 23596444; PubMed Central PMCID: PMCPMC3625856.
- 540 16. Kaye PM, Beattie L. Lessons from other diseases: granulomatous
- 541 inflammation in leishmaniasis. Semin Immunopathol. 2016;38(2):249-60. Epub
- 542 2015/12/19. doi: 10.1007/s00281-015-0548-7. PubMed PMID: 26678994; PubMed
- 543 Central PMCID: PMCPMC4779128.
- 544 17. Lundy SK, Lukacs NW. Chronic schistosome infection leads to modulation of
- 545 granuloma formation and systemic immune suppression. Front Immunol. 2013;4:39.
- 546 Epub 2013/02/23. doi: 10.3389/fimmu.2013.00039. PubMed PMID: 23429492;
- 547 PubMed Central PMCID: PMCPMC3576626.
- 548 18. Maroof A, Beattie L, Zubairi S, Svensson M, Stager S, Kaye PM.
- 549 Posttranscriptional regulation of II10 gene expression allows natural killer cells to
- express immunoregulatory function. Immunity. 2008;29(2):295-305. Epub
- 551 2008/08/15. doi: 10.1016/j.immuni.2008.06.012. PubMed PMID: 18701085; PubMed
- 552 Central PMCID: PMCPMC2656759.
- 553 19. Mentink-Kane MM, Cheever AW, Thompson RW, Hari DM, Kabatereine
- NB, Vennervald BJ, et al. IL-13 receptor alpha 2 down-modulates granulomatous
- 555 inflammation and prolongs host survival in schistosomiasis. Proc Natl Acad Sci U S
- 556 A. 2004;101(2):586-90. Epub 2003/12/31. doi: 10.1073/pnas.0305064101. PubMed
- 557 PMID: 14699044; PubMed Central PMCID: PMCPMC327191.

558 20. Owens BM, Beattie L, Moore JW, Brown N, Mann JL, Dalton JE, et al. IL-10-

producing Th1 cells and disease progression are regulated by distinct CD11c(+) cell

560 populations during visceral leishmaniasis. PLoS Pathog. 2012;8(7):e1002827. Epub

- 561 2012/08/23. doi: 10.1371/journal.ppat.1002827. PubMed PMID: 22911108; PubMed
- 562 Central PMCID: PMCPMC3406093.
- 563 21. Cotterell SE, Engwerda CR, Kaye PM. Leishmania donovani infection
- 564 initiates T cell-independent chemokine responses, which are subsequently amplified

565 in a T cell-dependent manner. Eur J Immunol. 1999;29(1):203-14. Epub 1999/02/05.

566 doi: 10.1002/(SICI)1521-4141(199901)29:01<203::AID-

- 567 IMMU203>3.0.CO;2-B. PubMed PMID: 9933102.
- 568 22. Beattie L, Svensson M, Bune A, Brown N, Maroof A, Zubairi S, et al.
- 569 Leishmania donovani-induced expression of signal regulatory protein alpha on
- 570 Kupffer cells enhances hepatic invariant NKT-cell activation. Eur J Immunol.
- 571 2010;40(1):117-23. Epub 2009/10/31. doi: 10.1002/eji.200939863. PubMed PMID:
- 572 19877019; PubMed Central PMCID: PMCPMC2909397.
- 573 23. Gupta G, Bhattacharjee S, Bhattacharyya S, Bhattacharya P, Adhikari A,
- 574 Mukherjee A, et al. CXC chemokine-mediated protection against visceral
- bis leishmaniasis: involvement of the proinflammatory response. J Infect Dis.
- 576 2009;200(8):1300-10. Epub 2009/09/12. doi: 10.1086/605895. PubMed PMID:
- 577 19743920.
- 578 24. Sato T, Thorlacius H, Johnston B, Staton TL, Xiang W, Littman DR, et al.
- 579 Role for CXCR6 in recruitment of activated CD8+ lymphocytes to inflamed liver. J
- 580 Immunol. 2005;174(1):277-83. Epub 2004/12/22. PubMed PMID: 15611250.
- 581 25. Lee WY, Moriarty TJ, Wong CH, Zhou H, Strieter RM, van Rooijen N, et al.
- 582 An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and

- 583 iNKT cells. Nat Immunol. 2010;11(4):295-302. Epub 2010/03/17. doi:
- 584 10.1038/ni.1855. PubMed PMID: 20228796; PubMed Central PMCID:

585 PMCPMC5114121.

- 586 26. Wehr A, Baeck C, Heymann F, Niemietz PM, Hammerich L, Martin C, et al.
- 587 Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes
- 588 inflammation and liver fibrosis. J Immunol. 2013;190(10):5226-36. Epub 2013/04/19.
- 589 doi: 10.4049/jimmunol.1202909. PubMed PMID: 23596313.
- 590 27. Murray HW. Tissue granuloma structure-function in experimental visceral
- 591 leishmaniasis. Int J Exp Pathol. 2001;82(5):249-67. Epub 2001/11/13. PubMed
- 592 PMID: 11703536; PubMed Central PMCID: PMCPMC2517779.
- 593 28. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global double-
- fluorescent Cre reporter mouse. Genesis. 2007;45(9):593-605. Epub 2007/09/18. doi:
- 595 10.1002/dvg.20335. PubMed PMID: 17868096.
- 596 29. Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I. Conditional gene
- targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res.
- 598 1999;8(4):265-77. Epub 2000/01/06. PubMed PMID: 10621974.
- 599 30. Beattie L, Peltan A, Maroof A, Kirby A, Brown N, Coles M, et al. Dynamic
- 600 imaging of experimental Leishmania donovani-induced hepatic granulomas detects
- 601 Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells. PLoS
- 602 Pathog. 2010;6(3):e1000805. Epub 2010/03/20. doi: 10.1371/journal.ppat.1000805.
- 603 PubMed PMID: 20300603; PubMed Central PMCID: PMCPMC2837408.
- 604 31. Beattie L, d'El-Rei Hermida M, Moore JW, Maroof A, Brown N, Lagos D, et
- al. A transcriptomic network identified in uninfected macrophages responding to
- 606 inflammation controls intracellular pathogen survival. Cell Host Microbe.

- 607 2013;14(3):357-68. Epub 2013/09/17. doi: 10.1016/j.chom.2013.08.004. PubMed
- 608 PMID: 24034621; PubMed Central PMCID: PMCPMC4180915.

609 32. Alden K, Read M, Timmis J, Andrews PS, Veiga-Fernandes H, Coles M.

- 610 Spartan: a comprehensive tool for understanding uncertainty in simulations of
- 611 biological systems. PLoS Comput Biol. 2013;9(2):e1002916. Epub 2013/03/08. doi:
- 612 10.1371/journal.pcbi.1002916. PubMed PMID: 23468606; PubMed Central PMCID:
- 613 PMCPMC3585389.
- 614 33. Svensson M, Zubairi S, Maroof A, Kazi F, Taniguchi M, Kaye PM. Invariant
- NKT cells are essential for the regulation of hepatic CXCL10 gene expression during
- 616 Leishmania donovani infection. Infect Immun. 2005;73(11):7541-7. Epub
- 617 2005/10/22. doi: 10.1128/IAI.73.11.7541-7547.2005. PubMed PMID: 16239557;
- 618 PubMed Central PMCID: PMCPMC1273891.
- 619 34. Fan J, Heller NM, Gorospe M, Atasoy U, Stellato C. The role of post-
- 620 transcriptional regulation in chemokine gene expression in inflammation and allergy.
- 621 Eur Respir J. 2005;26(5):933-47. Epub 2005/11/03. doi:
- 622 10.1183/09031936.05.00120204. PubMed PMID: 16264057.
- 623 35. An G. Concepts for developing a collaborative in silico model of the acute
- 624 inflammatory response using agent-based modeling. J Crit Care. 2006;21(1):105-10;
- 625 discussion 10-1. Epub 2006/04/18. doi: 10.1016/j.jcrc.2005.11.012. PubMed PMID:
- 626 16616634.
- 627 36. An G, Christley S. Addressing the translational dilemma: dynamic knowledge
- 628 representation of inflammation using agent-based modeling. Crit Rev Biomed Eng.
- 629 2012;40(4):323-40. Epub 2012/11/13. PubMed PMID: 23140123.
- 630 37. Moore JW, Moyo D, Beattie L, Andrews PS, Timmis J, Kaye PM. Functional
- 631 complexity of the Leishmania granuloma and the potential of in silico modeling.

- 632 Front Immunol. 2013;4:35. Epub 2013/02/21. doi: 10.3389/fimmu.2013.00035.
- 633 PubMed PMID: 23423646; PubMed Central PMCID: PMCPMC3573688.
- 634 38. Hoehme S, Brulport M, Bauer A, Bedawy E, Schormann W, Hermes M, et al.
- 635 Prediction and validation of cell alignment along microvessels as order principle to
- restore tissue architecture in liver regeneration. Proc Natl Acad Sci U S A.
- 637 2010;107(23):10371-6. Epub 2010/05/21. doi: 10.1073/pnas.0909374107. PubMed
- 638 PMID: 20484673; PubMed Central PMCID: PMCPMC2890786.
- 639 39. Wambaugh J, Shah I. Simulating microdosimetry in a virtual hepatic lobule.
- 640 PLoS Comput Biol. 2010;6(4):e1000756. Epub 2010/04/28. doi:
- 641 10.1371/journal.pcbi.1000756. PubMed PMID: 20421935; PubMed Central PMCID:
- 642 PMCPMC2858695.
- 643 40. Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A, Germain RN.
- 644 Macrophage and T cell dynamics during the development and disintegration of
- 645 mycobacterial granulomas. Immunity. 2008;28(2):271-84. Epub 2008/02/12. doi:
- 646 10.1016/j.immuni.2007.12.010. PubMed PMID: 18261937; PubMed Central PMCID:
- 647 PMCPMC2390753.
- 648 41. Bouwens L, Baekeland M, De Zanger R, Wisse E. Quantitation, tissue
- distribution and proliferation kinetics of Kupffer cells in normal rat liver. Hepatology.
- 650 1986;6(4):718-22. Epub 1986/07/01. PubMed PMID: 3733004.
- 42. Sleyster EC, Knook DL. Relation between localization and function of rat
- 652 liver Kupffer cells. Lab Invest. 1982;47(5):484-90. Epub 1982/11/01. PubMed PMID:
- 653 *6*182391.
- 654 43. Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M, Briskin
- 655 MJ, et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver
- 656 sinusoids. PLoS Biol. 2005;3(4):e113. Epub 2005/04/01. doi:

- 657 10.1371/journal.pbio.0030113. PubMed PMID: 15799695; PubMed Central PMCID:
 658 PMCPMC1073691.
- 44. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, et al.
- 660 Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science.
- 661 2013;339(6117):328-32. Epub 2013/01/19. doi: 10.1126/science.1228456. PubMed

662 PMID: 23329049.

- 663 45. Matsuda JL, Gapin L, Sidobre S, Kieper WC, Tan JT, Ceredig R, et al.
- Homeostasis of V alpha 14i NKT cells. Nat Immunol. 2002;3(10):966-74. Epub

665 2002/09/24. doi: 10.1038/ni837. PubMed PMID: 12244311.

- 666 46. Davis JM, Ramakrishnan L. The role of the granuloma in expansion and
- dissemination of early tuberculous infection. Cell. 2009;136(1):37-49. Epub
- 668 2009/01/13. doi: 10.1016/j.cell.2008.11.014. PubMed PMID: 19135887; PubMed
- 669 Central PMCID: PMCPMC3134310.
- 670 47. Egen JG, Rothfuchs AG, Feng CG, Horwitz MA, Sher A, Germain RN.
- 671 Intravital imaging reveals limited antigen presentation and T cell effector function in
- 672 mycobacterial granulomas. Immunity. 2011;34(5):807-19. Epub 2011/05/21. doi:
- 673 10.1016/j.immuni.2011.03.022. PubMed PMID: 21596592; PubMed Central PMCID:
- 674 PMCPMC3164316.
- 675 48. Flugge AJ, Timmis J, Andrews PS, Moore JW, Kaye PM. Modelling and
- 676 simulation of granuloma formation in visceral leishmaniasis. Evolutionary
- 677 Computation, 2009 CEC '09; IEEE Congress 20092009. p. 3052 9.
- 678 49. Beattie L, Sawtell A, Mann J, Frame TC, Teal B, de Labastida Rivera F, et al.
- Bone marrow-derived and resident liver macrophages display unique transcriptomic
- 680 signatures but similar biological functions. J Hepatol. 2016;65(4):758-68. Epub

681 2016/06/06. doi: 10.1016/j.jhep.2016.05.037. PubMed PMID: 27262757; PubMed

682 Central PMCID: PMCPMC5028381.

- 683 50. Amprey JL, Im JS, Turco SJ, Murray HW, Illarionov PA, Besra GS, et al. A
- subset of liver NK T cells is activated during Leishmania donovani infection by
- 685 CD1d-bound lipophosphoglycan. J Exp Med. 2004;200(7):895-904. Epub
- 686 2004/10/07. doi: 10.1084/jem.20040704. PubMed PMID: 15466622; PubMed Central
- 687 PMCID: PMCPMC2213292.
- 688 51. Robert-Gangneux F, Drogoul AS, Rostan O, Piquet-Pellorce C, Cayon J,
- 689 Lisbonne M, et al. Invariant NKT cells drive hepatic cytokinic microenvironment
- 690 favoring efficient granuloma formation and early control of Leishmania donovani
- 691 infection. PLoS One. 2012;7(3):e33413. Epub 2012/03/30. doi:
- 692 10.1371/journal.pone.0033413. PubMed PMID: 22457760; PubMed Central PMCID:
- 693 PMCPMC3310876.
- 694 52. Gasteiger G, Fan X, Dikiy S, Lee SY, Rudensky AY. Tissue residency of
- 695 innate lymphoid cells in lymphoid and nonlymphoid organs. Science.
- 696 2015;350(6263):981-5. Epub 2015/10/17. doi: 10.1126/science.aac9593. PubMed
- 697 PMID: 26472762; PubMed Central PMCID: PMCPMC4720139.
- 698 53. Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, et al.
- 699 Transcriptional programs define molecular characteristics of innate lymphoid cell
- classes and subsets. Nat Immunol. 2015;16(3):306-17. Epub 2015/01/27. doi:
- 701 10.1038/ni.3094. PubMed PMID: 25621825; PubMed Central PMCID:
- 702 PMCPMC4372143.
- 703 54. Juno JA, Keynan Y, Fowke KR. Invariant NKT cells: regulation and function
- 704 during viral infection. PLoS Pathog. 2012;8(8):e1002838. Epub 2012/08/24. doi:

705 10.1371/journal.ppat.1002838. PubMed PMID: 22916008; PubMed Central PMCID:
706 PMCPMC3420949.

- 707 55. Mattarollo SR, West AC, Steegh K, Duret H, Paget C, Martin B, et al. NKT
- 708 cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-
- cell lymphoma. Blood. 2012;120(15):3019-29. Epub 2012/08/31. doi: 10.1182/blood-
- 710 2012-04-426643. PubMed PMID: 22932803; PubMed Central PMCID:
- 711 PMCPMC3557399.
- 712 56. Mussai F, De Santo C, Cerundolo V. Interaction between invariant NKT cells
- and myeloid-derived suppressor cells in cancer patients: evidence and therapeutic
- 714 opportunities. J Immunother. 2012;35(6):449-59. Epub 2012/06/28. doi:
- 715 10.1097/CJI.0b013e31825be926. PubMed PMID: 22735803.
- 716 57. Pilones KA, Aryankalayil J, Demaria S. Invariant NKT cells as novel targets
- for immunotherapy in solid tumors. Clin Dev Immunol. 2012;2012:720803. Epub
- 718 2012/11/03. doi: 10.1155/2012/720803. PubMed PMID: 23118781; PubMed Central
- 719 PMCID: PMCPMC3483734.
- 58. Gonzalez-Aseguinolaza G, de Oliveira C, Tomaska M, Hong S, Bruna-
- 721 Romero O, Nakayama T, et al. alpha -galactosylceramide-activated Valpha 14 natural
- killer T cells mediate protection against murine malaria. Proc Natl Acad Sci U S A.
- 723 2000;97(15):8461-6. Epub 2000/07/19. PubMed PMID: 10900007; PubMed Central
- 724 PMCID: PMCPMC26970.
- 59. Chackerian A, Alt J, Perera V, Behar SM. Activation of NKT cells protects
- 726 mice from tuberculosis. Infect Immun. 2002;70(11):6302-9. Epub 2002/10/16.
- PubMed PMID: 12379709; PubMed Central PMCID: PMCPMC130331.
- 728 60. Albergante L, Timmis J, Beattie L, Kaye PM. A Petri net model of
- 729 granulomatous inflammation: implications for IL-10 mediated control of Leishmania

- 730 donovani infection. PLoS Comput Biol. 2013;9(11):e1003334. Epub 2013/12/24. doi:
- 731 10.1371/journal.pcbi.1003334. PubMed PMID: 24363630; PubMed Central PMCID:
- 732 PMCPMC3867212.

734 Figure Legends

735 Figure 1. *L. donovani* infection induces transactivation of Kupffer cells for

736 chemokine production

(A) Heat map showing chemokine mRNA abundance in flow sorted Kupffer cells

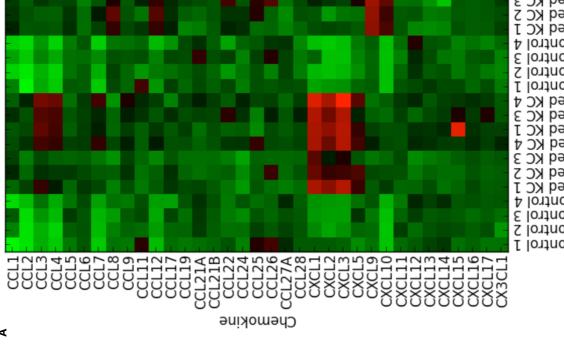
- from naïve mice (control) and from KCs isolated from infected mice and separated
- into those containing parasites ("infected") and those that do not contain parasites
- 740 ("inflamed"). KC isolation was performed at 2h and 12h post infection, with matched
- controls. Lanes numbered 1-4 indicates separate sorts. The gating strategy for
- separating "infected" from "inflamed" KCs is provided in Figure 3 of reference 31. (B
- and C) Two modeling scenarios were generated. In scenario 1 (panel B), only
- 744 infected KCs produce sufficient chemokine to attract and retain NKT cells. In
- scenario 2 (panel C) both infected and inflamed KCs produce chemokines to attract
- NKT cells, although only infected KCs have the ability to retain these through

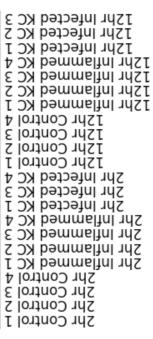
747 cognate interactions.

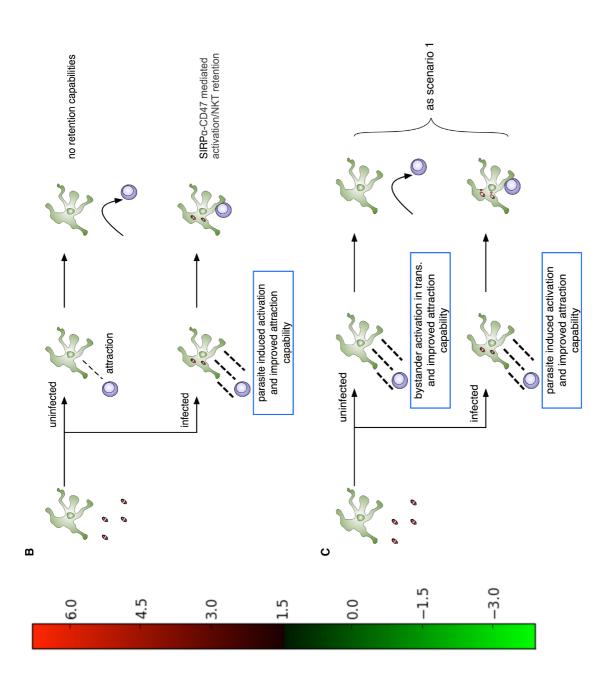
748

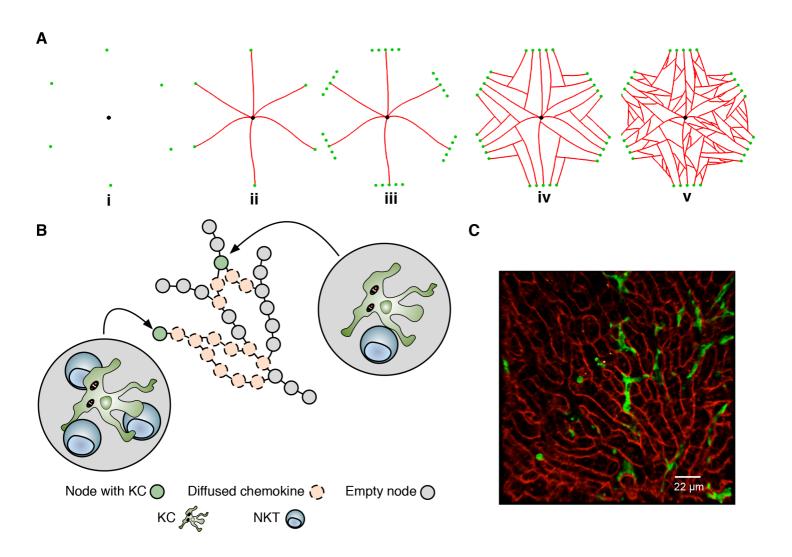
749 Figure 2. Overview of the liver agent based model

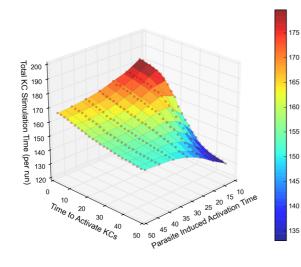
750 (A) A simulated sinusoidal network was constructed in quasi-2D space using a

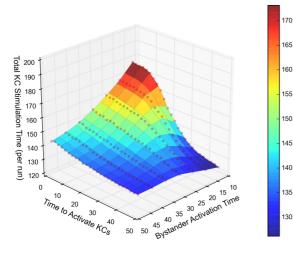

sinusoidal structure generation algorithm (see Supplemental Experimental

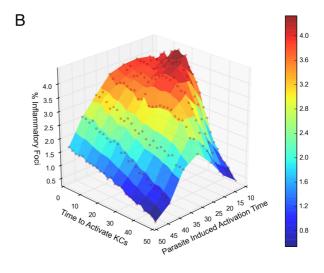

752 **Procedures**). A drain node representing the portal vein (black) is placed in the centre

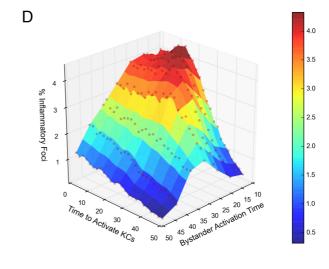

- of a 2D space with six surrounding entry nodes representing the portal triads (green),
- forming an irregular hexagon layout (i). Sinusoids (red) are grown from entry nodes
- to the drain node (ii). Additional entry nodes created around original entry nodes
- conceptual form a portal triad (iii), allow additional sinusoids to be grown (iv).
- 757 Additional sinusoid branches are added between existing sinusoids (v).
- Execution of the algorithm is shown in Movie S1. (B) Node structure of the model

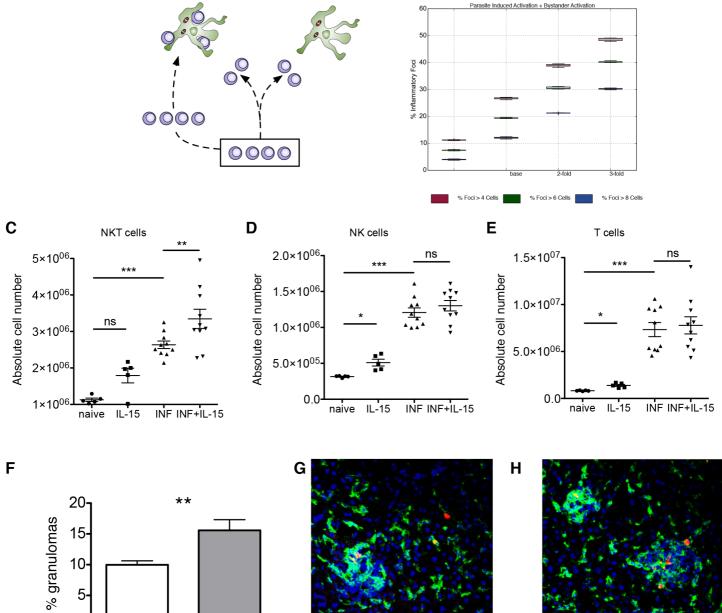

759	underlying KC placement and chemokine diffusion. Nodes are populated or not with			
760	a single KC, and may attract NKT cells to that node. Chemokines exert their effect			
761	by "diffusing" across nodes. For further details, see text and Supplementary			
762	Experimental Procedures. (C) Snapshot of 2-photon image of liver from (mT/mG x			
763	lysMcre) _{F1} mice, showing sinusoids (red) and KCs (green).			
764				
765 766 767	Figure 3. Response landscapes for parasite-induced KC activation with and without KC activation in trans.			
768	(A-D) Two-at-a-time (TAT) parameter analysis showing the effect on total KC			
769	stimulation time (A, C) and on % inflammatory foci (B and D) of modifying either			
770	cumulative time to activate KCs and parasite-induced activation time (A and B)			
771	or cumulative time to activate KCs and bystander activation time (C and D). For			
772	further details, see Supplementary Experimental Procedures.			
773				
774	Figure 4. Expansion of NKT Cells promotes granuloma formation			
775	(A) Alternate hypotheses for impact of increasing NKT cell number. (B) Increasing			
776	NKT cells in silico leads to greater percentages of KCs that form an inflammatory			
777	focus, when qualified at 4, 6 and 8 cells. (C - E) Absolute numbers of NKT (C), NK			
778	(D) and T cells (E) in naïve and infected mice with or without administration of rIL-			
779	15. Results are pooled from two independent experiments and represent mean±SEM			
780	(n=10 mice per group). *P<0.05, **P<0.01, ***P<0.001, by paired Students t-test.			
781	(F) Percentage of infected KCs with surrounding granuloma in control and rIL-15-			
782	treated infected mice. **P<0.01 (n=10 mice). (G and H) Heterogeneity of			
783	granulomas comparing infected (G) and rIL-15-treated (H) mice infected with			

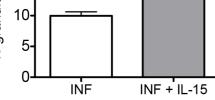

- 784 TdTomato-L. donovani (red). Sections were stained using F4/80 (green) and
- counterstained with DAPI (blue).

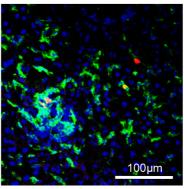












В

A

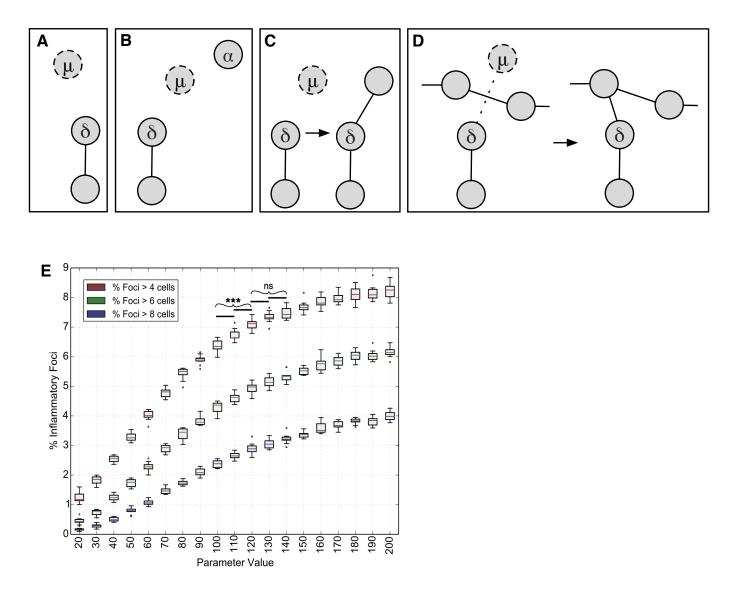
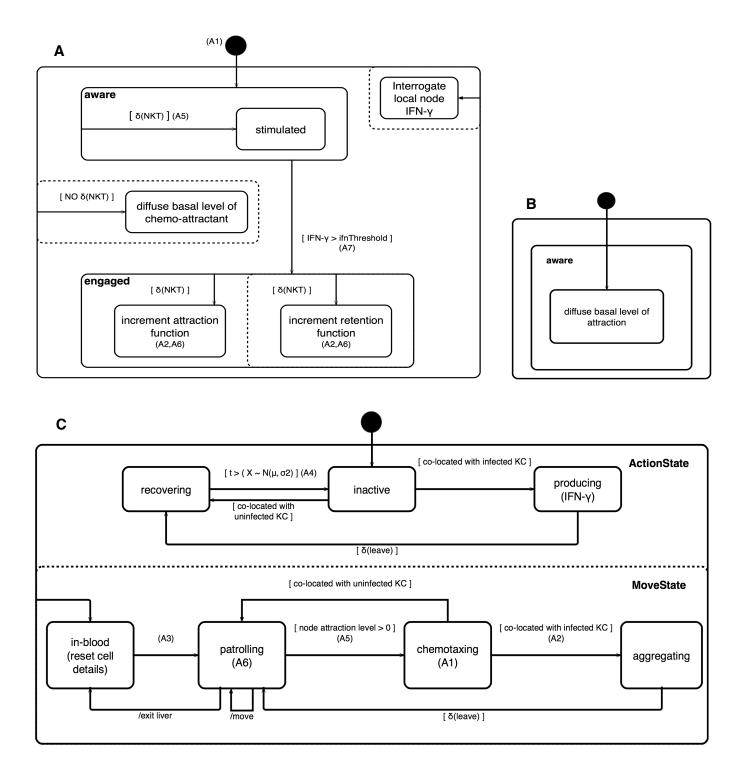
100µm

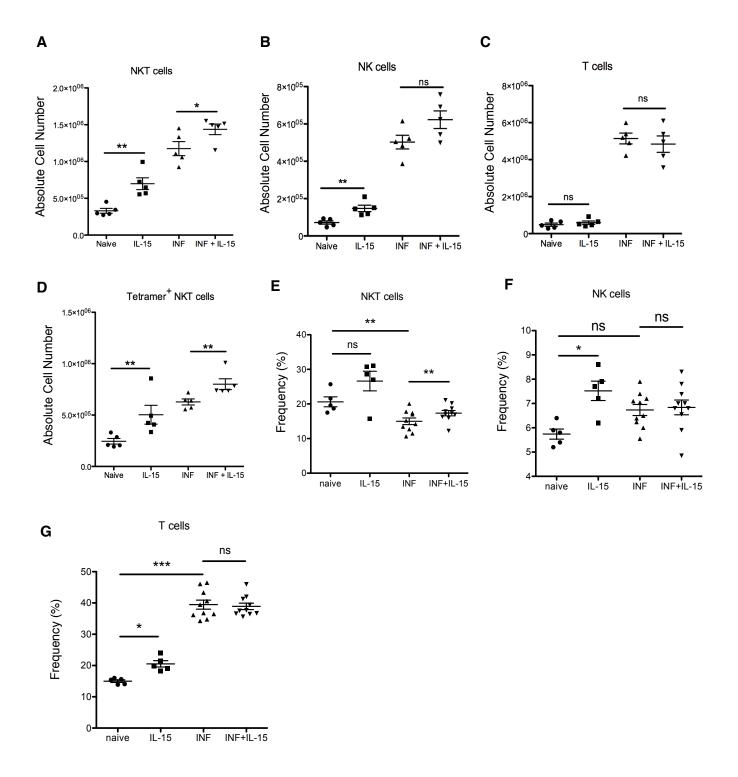
Supplemental Information

Macrophage transactivation for chemokine production negatively regulates granulomatous inflammation.

Daniel Moyo^{1,2}, Lynette Beattie^{1*}, Paul S Andrews³, John W J Moore¹, Jon Timmis³, Amy Sawtell¹, Stefan Hoehme⁴, Adam T. Sampson⁵, Paul M Kaye¹

Supplemental Figures


Figure S1. Related to Figure 2. Generation of Nodes and Edges of a Sinusoid Network.

(A-D) See Algorithm 1 in Supplemental Experimental Procedures. (E) Effect on percentage inflammatory foci qualified at 4, 6 and 8 cells, when modifying maximum chemokine diffusion distance.

Figure S2. Related to Figure 2. State-diagrams for Kupffer cell and NKT cell behaviors.

(A) Infected Kupffer Cell; (B) uninfected Kupffer Cell; (C) NKT cell. See State Transition Diagrams in Supplemental Experimental Procedures.

Figure S3. Related to Figure 4. IL-15 Promotes NKT Cell Expansion.

(A) Absolute cell numbers for NKT, (B) NK and (C) T cells, and (D) CD1d tetramer+ NKT cells for naïve, IL-15 treated naïve (IL-15), infected (INF) and IL-15 pre-treated infected (INF+IL-15) mice. (E) Relative frequency of NKT, (F) NK and (G) T cells for naïve, IL-15 treated naïve (IL-15), infected (INF) and IL-15 pre-treated infected (INF+IL-15) mice. Results are depicted as mean \pm SEM of 5 mice per group. *P \leq 0.05, **P \leq 0.01 paired Students t-test.

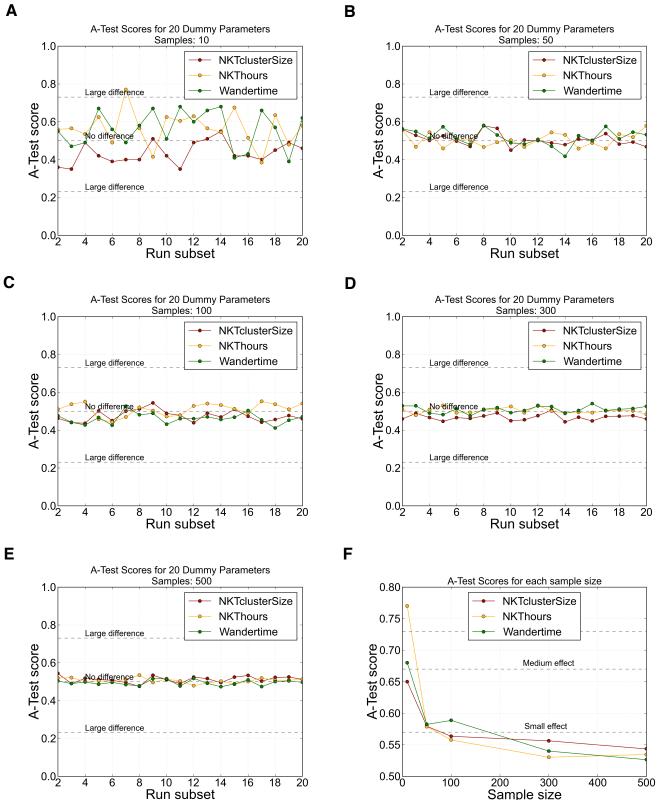


Figure S4. Related to Figure 2. Aleatory Analysis Determines a Minimum of 300 Simulation Runs per Experiment. A-test (Vargha and Delaney, 2000) scores for three simulation output measures across sample sizes of (A) 10, (B) 50, (C) 100, (D) 300 and (E) 500, illustrating that greater than 300 simulation runs are needed to capture the variation in output results and mitigate uncertainty, summarized in (F).

Supplemental Tables

Biological Parameters	Value	Source	
NKT cell velocity in the sinusoids	$10-20\mu$ m/minute	(Geissmann et al., 2005)	
NKT cell numbers in a section of mouse liver lobule	\sim 49(\sim 1:3 ratio with KCs)	Derived from (Lee et al., 2010)	
		and unpublished data	
Kupffer cell numbers per gram	14-20 x 10 ⁶ /g	(Bouwens et al., 1986)	
Infected KCs at 2 hours	$\sim 23\%$	Unpublished data	
KCs per lobule section	~ 146	Unpublished data	
Non-branched segment length	$43.1 \pm 2.25 \ \mu \mathrm{m}$	(Höhme et al., 2010)	
Mean branching angles of sinusoids	$32.5^\circ \pm 11.2^\circ$	(Höhme et al., 2010)	
	Percentages:		
	Periportal (PP) - 43	(Bouwens et al., 1986; Sloweter and Knock, 1982)	
KC spatial distribution	Midzonal (MZ) - 28		
	Centrilobular (CV) - 29	Sleyster and Knook, 1982)	
	Ratios: 4(PP), 3(MZ), 2(CV)		

Table S1. Related to Figure 2. Table of biological parameters used for calibration.

	Domain	Platform	Justification
KC_A1		Infected KCs are infected at initiation of the simulation, t(0).	KCs rapidly phagocytose parasites. We are not in- vestigating conditions pre- infection.
KC_A2		Infected KCs can recruit and retain cells.	Unpublished data.
KC_A3		Uninfected KCs can only recruit cells.	Unpublished data.
KC_A4	KCs are immobile	KCs have no movement rules	(Lee et al., 2010)
KC_A5	KC retention of NKT cells is probabilistic, mediated by SIRP-a - CD47 interactions and local IFN-g concentra- tion.	Cognate interactions occur when two cells are co-located on the same node and are not mod- eled explicitly. Retention is modeled probabilis- tically using a function modified by local IFN-g level	(Beattie et al., 2010; Svens- son et al., 2005)
KC_A6	NKT produced IFN-g affects KC attractive chemokine production.	Retentive chemokine level increases in-line with local IFN-g level and increases the diffusion dis- tance of attractive chemokine linearly. Retentive chemokine diffusion distance can decay.	Simplification, no experi- mental data available.
KC_A7	There is a threshold level of stimulation required to activate a KC.	KCs will not transition to an engaged state until a threshold level of IFN-g is reached.	To facilitate implementation, no experimental data avail- able.
NKT_A1	NKT cells respond to chemo- attractant	NKT cells under chemotaxis, when presented with two or more attraction gradients, will choose a direction based on attractive chemokine strength.	To facilitate implementation, no experimental data avail- able.
NKT_A2	NKT cells interact with KCs	NKT cells will interact with the first infected KC they encounter whilst in chemotaxis.	To facilitate implementation, no experimental data avail- able.
NKT_A3		The NKT cell population of the lobule section remains constant; cells exiting the environment will enter as new cells via an entry point.	
NKT_A4	NKT cells are capable of be- coming anergic	NKT cells are refractive to stimulation and take a period of time to recover after stimulating and leaving a KC.	(Iyoda et al., 2010)
NKT_A5		NKT cells will respond immediately to a chemokine signal.	To facilitate implementation, no experimental data avail- able.
	NKT cells can walk the si- nusoids and switch direction probabilistically NKT cells perform a random walk of the tree- node structure, and a probability governs their	NKT cells perform a random walk of the tree- node structure, and a probability governs their ability to turn in the sinusoids at random.	(Geissmann et al., 2005)
C_A1	Attractive chemokines flow in the same direction as blood would.	Attraction diffuses downstream of infected KCs towards the central vein.	Chemotaxis in 3D environ- ments is poorly understood (Haessler et al., 2011)
C_A2		Strength of attractive chemokine is a function of distance from source, calculated using a simplified Ficks Law of diffusion.	To facilitate implementation.
C_A3		Chemokine growth is calculated using a sigmoid function.	To facilitate implementation, no experimental data avail- able.

Table S2. Related to Figure 2. Modelling Assumptions. Statement of assumptions made regarding the underlying biological domain (domain) and how we have abstracted this information in the engineered simulation (platform). Assumptions labeled KC₋ relate to Kupffer Cells, NKT₋ to NKT Cells, and C₋ to chemokines. Assumptions make it possible to model when data is limited or there is a gap in understanding or the literature.

Parameter		Value	Units	Description	Source
	p_numInfectedKCs	33	cells	Number of infected kupffer cells in a π*(284μm)^2 sectional area of sinusoid.	Calibrated to unpublished data
	p_numUninfected	113	cells	Number of uninfected kupffer cells in a π*(284μm)^2 sectional area of sinusoid.	
Simulation	p_numNKTs	49	cells	Number of NKT cells in a π*(284μm)^2 sectional area o sinusoid.	Calibrated to unpublished data and (Lee et al., 2010) [.] (Geissmann et al., 2005)
Chemokine	p_chemoAttract	43200	iterations	Stimulation time required to reach maximum attractive chemokine concentration.	
	p_chemoRetain	172800	iterations	Interaction time required to reach maximum retentive chemokine concentration.	No biological equivalent; explored and chosen through parameter sensitivity analysis
	p_chemolFN	172800	iterations	Interaction time required to reach activate infected KCs.	

Parameter		Value	Units	Description	Source
NKT cell	p_turnProb	0.005	probability	Probability that an NKT cell will reverse direction in the sinusoids.	No biological equivalent; explored and chosen through parameter sensitivity analysis.
	p_moveMin	3	iterations	Value given to link simulation iterations to NKT cell velocity.	Calibrated to published NKT cell speeds from (Geissmann et al., 2005)
	p_moveMax	6			
	p_anergicItns	3600	iterations	Time in iterations for an NKT cell to remain unable to stimulate a KC.	No biological equivalent; explored and chosen through parameter sensitivity analysis.
	p_escapeltns	600	iterations	Time in iterations for an NKT cell to escape the influence of KC produced chemo-attractant.	
	p_leaveProb	0.000265306	probability	The probability of an interacting NKT cell leaving the location of an infected KC.	
	p_minLeaveProb	0.00005	probability	To guard against the probabilistic tipping point whereby retention causes cells to never leave.	
	p_chemolFN	172800	iterations	Interaction time required to reach maximum attractive chemokine concentration.	
Kupffer cell	p_chemoDist	20	distance(nodes)	Starting diffusion distance for attractive chemokine.	No biological equivalent; explored and chosen through parameter sensitivity analysis.
	p_ratioCV	0.1	percentage	Ratio of infected cells in the CV region of the lobule section	
	p_ratioMZ	0.25	percentage	Ratio of infected cells in the MZ region of the lobule section	Bouwens et al., 1986. Sleyster et al., 1982.
	p_ratioPP	0.65	percentage	Ratio of infected cells in the PP region of the lobule section	
	p_maxDist	200	distance(nodes)	Maximum diffusion distance for attractive chemokine.	Calibrated to twice reported max(Weber et al., 2013)
	p_ifnThreshold	0.999	threshold	Threshold value of IFN- γ required to activate a KC. Chemokine function $f(x) \rightarrow 1$, therefore a threshold is required.	No biological equivalent

Table S3. Related to Figure 2. Simulation Parameters. Summary of the simulation parameters, descriptions of their purpose, values and any data sources for parameters relating to cell numbers and chemokine functions. All estimated values are based on a comprehensive sensitivity analysis for parameters that have unknown or no clear biological value.

Supplemental Movies

Movie S1. Related to Figure 2. Sinusoid structure generation algorithm. Execution of the sinusoid structure generation algorithm at 8x speed. Drain node (cyan), entry nodes (green) and sinusoids (red).

Supplemental Experimental Procedures

We assume that our sinusoid network exists in a quasi-2D space (we can consider this as a slice through a 3D lobule). We also assume that the lobule structure is roughly hexagonal with a single central vein in the centre and six portal triad areas placed at roughly regular intervals around the central vein. The flow of blood borne cells is assumed to be from portal triads to the central vein, so in the algorithmic description below the central vein is termed a drain node, and the portal triad regions deemed entry nodes.

Algorithm 1 describes how the nodes and edges of the sinusoid network are generated, whilst Algorithm 2 describes how the overall sinusoid network (the lobule) is generated using Algorithm 1. Höhme et al. (2010) provide us with the following statistics that guide Algorithm 2:

- Average length between central vein and portal triad = 284μ m;
- Average length of a non-branched sinusoid = $43.1 \mu m$;
- Average angle between branching sinusoids = 32.5° .

Algorithm 1: Sinusoid branch generation

- 1. A potential new node (μ) is generated 1 μ m from the current node (δ)
 - (a) If we are within range of an attracting node (α) then μ is generated in the direction of α (see Figure S4(B)).
 - (b) Otherwise μ is generated based on our current direction with a small random adjustment (see Figure S4(A)).
- 2. Create a new edge between δ and another node:
 - (a) If the line between δ and μ intersects another edge in the sinusoid network, then connect δ to the closest existing node (see Figure S4(D)).
 - (b) Otherwise connect δ and μ (see Figure S4(C)).
- 3. Repeat Steps 1 and 2 until an intersection is detected.

Algorithm 2: Sinusoid network (lobule) generation

- 1. A drain node (representing the central vein) is placed in the centre of the 2D space, surrounded by six entry nodes (representing the locations of portal triads) in an irregular hexagon formation (see Figure 2(Ai)). The exact location of the entry nodes is determined stochastically.
- 2. For each of the six entry nodes a sinusoid branch is grown (see algorithm 1) from the entry node towards the attracting drain node (see Figure 2(Aii)).
- 3. An additional set of entry nodes is created for each original entry node and aligned with the original node. These additional nodes represent additional sources of blood supply coming out of the portal triad (see Figure 2(Aiii)).
- 4. For each of the new entry nodes a sinusoid branch is grown (see algorithm 1) from the entry node towards the existing sinusoid structure (see Figure 2(Aiv)).
- 5. Additional sinusoids are created to connect existing sinusoids (see Figure 2(Av)).
 - Select the longest sinusoid in the structure
 - Select a node in the longest sinusoid and grow a sinusoid (see algorithm 1) to either the left or right at an angle drawn from a normal distribution with a mean of 32.5°.
 - Repeat until the mean sinusoid length of the entire structure reaches 43.1μ m.

Cell Attraction Dynamics

If we assume an infected KC diffuses chemokine to a downstream node α , chemokine strength at α is a function of distance:

 λ/δ

Where:

 λ is the chemokine strength at the infected node. δ is the distance in nodes between the KC and α .

Uninfected KCs are unable to modify their attraction diffusion distance from the parameterized minimum (Scenario A only), whereas infected-KC attractive chemokine diffusion distance is variable between a minimum and maximum distance. That distance is calculated as a function of the current level of attractive chemokine at the source KC location:

Where:

 $\delta = |\lambda \cdot (\delta \max - \delta \min)|$

 λ is the chemokine strength at the infected node. δ max is the maximum parameterized diffusion distance. δ min is the minimum parameterized diffusion distance

The function is floored to the nearest integer and that is used as the updated diffusion distance.

Cell Retention Dynamics

The equation governing NKT cell retention is:

 δ nktleave = δ leave ($\phi \cdot \delta$ leave)

Where:

 δ nktleave is the probability of an NKT cell leaving an infection site. δ leave is the maximum parameterized retention probability. ϕ is the level of retentive chemokine at the infected node.

As the calculated probability will approach zero given suitable conditions, a minimum retention probability is parameterized to ensure that KCs do not become so retentive that NKT cells are then incapable of leaving.

State-Transition Diagrams

Figure S2 depicts state-transition diagrams using the Unified Modelling Language (UML). These diagrams are the engineering specific (platform) ones used to create the simulator. To improve clarity, various annotations are added to convey information relevant to our modelling context. Arrows denote transitions between states. Square brackets ([]) denote guards for a transition, conditions that must be met before a transition can occur. Dashed lines denote states or behaviours that occur concurrently. Where an assumption number is stated on a diagram, denoted by (An), refer to the relevant cell assumption table. The δ () notation denotes an interaction that might occur probabilistically, for example a cell-cell interaction.

- Infected Kupffer Cells (Figure S2(A)): begin in an aware state and have a minimum level of attractive chemokine and minimum diffusion distance of attraction. If the level of cell-local interferon-gamma produced by NKT cells reaches a threshold (ifnThreshold), infected KCs become engaged. When infected KCs are engaged, if there is sustained interaction with NKTs, indicated by δ (NKT), they will increase their level of attraction and retention.
- Uninfected Kupffer Cells (Figure S2(B)): always in an aware state and only diffuse the minimum level of attractive chemokine. They do not interact with NKTs by any other means.
- **NKT cells** (Figure S2(C)): have two state types, ActionStates and MoveStates. The initial ActionState is inactive. If an infected KC is encountered the NKT will begin producing interferon- until probabilistically leaving mediated by the retention level of the KC. If NKT cells encounter uninfected KCs, they will transition to the recovering state. NKTs leave the recovering state after a time sampled from a normal distribution, this time is significantly shorter for NKTs that previously left uninfected KCs, and hence havent been in the producing state. The default NKT cell MoveState is patrolling. Upon sensing a level of attraction, NKT cells will transition to a chemotaxing state. Interaction with an infected KC will cause the NKT to switch to an aggregating state; alternatively an uninfected KC encounter will lead back to a patrolling state. Aggregating NKT cells can transition to patrolling behavior probabilistically. Should NKT cells exit the liver environment, if the entry condition is satisfied, they will emerge from an environment entry point, effectively as another cell.

Parameterizing and Calibrating the Simulation

A full summary of the biological data available that was used to calibrate the simulation is listed in Table S1, though these are merely the domain specific parameters, and a number of implementation specific parameters are required in order to abstract domain behaviors into executable computer code. A good example of an implementation specific parameter relates to NKT cell speed. NKT cells traverse the sinusoids at 10-20m/minute. In the simulation, this corresponds to 10-20 nodes/minute. Our simulation iterations are in seconds, so for a cell to travel at a maximum speed of 20 nodes/minute it would have to move every 3 simulation iterations (p_moveMin), and a minimum speed of 10 nodes/minute every 6 simulation iterations (p_moveMax). Rather than have individual cell speed remain constant, we allow it to be dynamic within the published biological range. We calculate, probabilistically between p_moveMin and p_moveMax, the number of iterations a cell will remain stationary before its next move. This allows individual cells to speed up and slow down dynamically, yet maintains a normal distribution of cell speeds across the population and within the biologically specified range. The entire list of baseline simulation parameters can be viewed in Table S3. Several parameters have no biological equivalent though are fundamental for the implementation of many behaviors. We performed parameter sensitivity analysis (SA) in order to determine which parameters the simulation is extremely sensitive to, and to establish baseline parameter values. Finally SA allows us to ensure we are always interpreting our results with the knowledge that particular extreme parameter combinations might influence those results.

Each simulated experiment is run across 10 separate structures in order to approximate variance across the set. For each parameter value investigated (or combination of parameter values) per experiment, 500 simulation runs are performed, this number chosen after performing aleatory uncertainty analysis on the simulator. Aleatory analysis can be used to determine the minimum number of replicates runs required to both mitigate the effects of stochasticity on simulation output, and to generate results that cover a representative spectrum of possible system behaviours (Alden et al., 2013). Fig. S3f shows that 300 simulation runs per parameter combination are sufficient to have acceptable uncertainty (small variance between identical sample sizes), though we perform 500 in order to strike a balance between further reducing A-test effect size (Vargha and Delaney, 2000) and maintaining tractable simulated-experiment execution times.

Supplemental References

Haessler, U., Pisano, M., Wu, M., and Swartz, M.A. (2011). Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proceedings of the National Academy of Sciences of the United States of America 108(14), 5614-5619.

Iyoda, T., Ushida, M., Kimura, Y., Minamino, K., Hayuka, A., Yokohata, S., Ehara, H., and Inaba, K. (2010). Invariant NKT cell Anergy is Induced by a Strong TCR-Mediated Signal Plus Co-stimulation. International Immunology 22(11), 905913.

Vargha, A., and Delaney, H. D. (2000). A Critique and Improvement of the "CL" Common Language Effect Size Statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics 25(2), 101132.