
TYPE Original Research

PUBLISHED 12 May 2023

DOI 10.3389/fcomp.2023.1085867

OPEN ACCESS

EDITED BY

Sebastian Albrecht von Mammen,

Julius Maximilian University of Würzburg,

Germany

REVIEWED BY

Sabine Fischer,

University of Würzburg, Germany

Timothy Davison,

Trinity University, United States

Robert Holash,

University of Calgary, Canada

*CORRESPONDENCE

Naman Merchant

n.merchant@abertay.ac.uk

Ruth E. Falconer

r.falconer@abertay.ac.uk

RECEIVED 31 October 2022

ACCEPTED 17 April 2023

PUBLISHED 12 May 2023

CITATION

Merchant N, Sampson AT, Boiko A and

Falconer RE (2023) Dense agent-based HPC

simulation of cell physics and signaling with

real-time user interactions.

Front. Comput. Sci. 5:1085867.

doi: 10.3389/fcomp.2023.1085867

COPYRIGHT

© 2023 Merchant, Sampson, Boiko and

Falconer. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Dense agent-based HPC
simulation of cell physics and
signaling with real-time user
interactions

Naman Merchant1*, Adam T. Sampson2, Andrei Boiko1 and

Ruth E. Falconer1*

1School of Design and Informatics, Abertay University, Dundee, United Kingdom, 2School of

Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, United Kingdom

Introduction: Distributed simulations of complex systems to date have focused

on scalability and correctness rather than interactive visualization. Interactive

visual simulations have particular advantages for exploring emergent behaviors of

complex systems. Interpretation of simulations of complex systems such as cancer

cell tumors is a challenge and can be greatly assisted by using “built-in” real-time

user interaction and subsequent visualization.

Methods: We explore this approach using a multi-scale model which couples

a cell physics model with a cell signaling model. This paper presents a

novel communication protocol for real-time user interaction and visualization

with a large-scale distributed simulation with minimal impact on performance.

Specifically, we explore how optimistic synchronization can be used to enable

real-time user interaction and visualization in a densely packed parallel agent-

based simulation, whilst maintaining scalability and determinism. We also describe

the software framework created and the distribution strategy for the models

utilized. The key features of the High-Performance Computing (HPC) simulation

that were evaluated are scalability, deterministic verification, speed of real-time

user interactions, and deadlock avoidance.

Results: We use two commodity HPC systems, ARCHER (118,080 CPU cores) and

ARCHER2 (750,080 CPU cores), where we simulate up to 256 million agents (one

million cells) using up to 21,953 computational cores and record a response time

overhead of ≃350 ms from the issued user events.

Discussion: The approach is viable and can be used to underpin transformative

technologies o�ering immersive simulations such as Digital Twins. The framework

explained in this paper is not limited to the models used and can be adapted to

systems biology models that use similar standards (physics models using agent-

based interactions, and signaling pathways using SBML) and other interactive

distributed simulations.

KEYWORDS

parallel agent-based simulation, ARCHER, ARCHER2, drug discovery, complex system

simulations, real-time interactions, cell physics, rollback and recover

1. Introduction

Distributed computing is used to improve the computational performance of large-

scale simulations. This is particularly true for bottom-up modeling approaches seeking

to translate micro-scale processes to macro-scale properties, typically using agent-based

modeling. Interpretation of the model and its output can be challenging and “built-in” real-

time user interaction can help. This can be viewed as an interactive “playable” model of a

system that facilitates learning through exploration and by fostering a deeper understanding

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1085867
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1085867&domain=pdf&date_stamp=2023-05-12
mailto:n.merchant@abertay.ac.uk
mailto:r.falconer@abertay.ac.uk
https://doi.org/10.3389/fcomp.2023.1085867
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1085867/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

of the system. This paper presents a novel communication

protocol for real-time user interaction with a large-scale distributed

simulation (up to one million cells, and ≃ 22, 000 computational

units) with minimal impact on performance.

Distributed simulations are composed of a set of Logical

Processes (LPs) that each run code sequentially. Since LPs in

the simulation cannot see the state of other LPs, messages are

transferred for communication. The distribution of a simulation

model requires synchronization to ensure the accuracy and

determinism of the simulation. Synchronization approaches

date back to Chandy and Misra (1979) and Jefferson (1985)

which have provided efficient solutions for event-based time-step

synchronization. Vector Clocks (Lamport, 1978) also define a

method of maintaining the order of events on distributed LPs.

Synchronization methods are needed to retain determinism in a

distributed program.

Agent-based simulation models (ABMs) make use of spatial

decomposition and migration of agents over a distributed memory

environment. As the interaction between agents within an ABM

depends on the type of simulation, it is difficult to generalize

scalable distributed versions of an agent-based simulation. For

example, the ScEM cell physics model (Newman, 2007) requires

two integration steps for each time-step, and having that model

plugged into a generalized ABM framework such as Distributed

MASON (Cordasco et al., 2018) or UISS (Pappalardo et al., 2010)

would be possible, but would not immediately accommodate for

real-time user interactions which is the primary focus of our

work. Distributed MASON makes use of the Message Passing

Interface (MPI) and can generate PNGs or Quicktime movies

at the end of the simulation, while UISS is designed to work

specifically with the immune system. However, these methods

cannot accommodate real-time user interaction and visualization

of effects in complex systems with emergent behaviors. Our

project uses MPI to distribute a signaling and cell physics models

(Newman, 2005) while enabling real-time user visualizations and

interactions on a tissue level.

Visualizing and interacting with simulations in real-time is not

a new concept. A Digital Twin is the virtual representation of a

real-world physical system. The Digital Twinning field aligns with

this desire where the simulation will respond to user input, and

updates are displayed within an acceptable time limit, avoiding

the need to restart the simulation. Interactive simulations have

particular advantages for exploring dynamic emergent behaviors

of complex systems in applications such as cancer drug discovery.

Our previous work used game engine technology to create visual

simulations afforded by GPGPU implementations (Falconer and

Houston, 2015).

SiViT (Bown et al., 2017) simulates and visualizes the response

of an ovarian cancer cell to different drug interventions. The

existing implementation of SiViT operates in three stages: first,

the user defines a treatment regime, then the simulation runs, and

finally, the simulation results are presented graphically. Although

users can navigate through the simulated timeline to view the

state of the cell at any time point and also play/replay the entire

simulation to observe signaling pathway dynamics, it does not

allow changes to be made to the simulation in real-time. Using a

bespoke game engine (Isaacs et al., 2011) displayed sustainability

indicators over a 3D virtual environment which were recalculated

in real-time based on user input. These approaches to interactive

simulations with visualization were not distributed and we extend

the approach here.

Others have drawn inspiration from the field of computer

games, such as Massively-Multiplayer Online games (MMOs), to

enable user interactions with large-scale worlds. Here, each LP

within a simulation handles a certain amount of computational

work, making use of loose synchronization and prediction to

obtain approximate results with real-time performance. A separate

visualization process is then initialized as a unique LP in the

simulation which will only be responsible for collecting data from

selected LPs and displaying it to the user.

The visualizer collects selected data from areas of the simulation

that are of interest, i.e., a frustum. The quantity of this data

depends on the size of this frustum in the simulation (e.g., position,

clipping plane, and the density of surrounding objects). We use the

Visualization Toolkit (Schroeder et al., 2006) to visualize the data

that has been received. Traditionally LPs transfer messages only to

their immediate neighbors, which can be scheduled on physically

nearby compute resources, but the visualizer is further away from

these LPs, thus the network latency and the size of the messages

to the visualizer can be variable for each communicating time-step.

This makes interacting with the simulation challenging because, in

a non-blocking approach, simulation LPs can be a few time steps

ahead of the step where the user-defined alteration needs to be

introduced.

In Parallel Discrete Event Simulations (PDES) change of state

can be tracked in the form of messages among LPs. Our simulation

makes use of continuous ABMs (ScEM and SiViT) where the

change of state takes place with minuscule communications

between agents. As these agents are densely populated in the

simulation space, the number of messages transferred between

parallel LPs to maintain determinism is much higher than

traditional PDES.

We have deployed a dense agent-based simulation inspired by

Jefferson’s optimistic simulation (Jefferson, 1985; Hybinette and

Fujimoto, 2002) and MMOs to support real-time user interactions

with a deterministic distributed simulation. We will implement

this using the standard Message Passing Interface (MPI) (Clarke

et al., 1994) with N ranks, where (N − 1) ranks will be

used for the simulation LPs, and 1 rank will be the visualizer

LP. In our simulation, an MPI rank will be synonymous with

an LP.

1.1. Case study

In this work, we have chosen to focus on the problem of

cancer drug discovery (although the techniques we describe apply

to other areas too; see Section 5.1). The objective is to simulate a

cancer spheroid containing one million cells with real-time user

interactions to enable the exploration of novel drugs and treatment

regimes. To reach this scale, we must take advantage of parallel

computing resources. We build on previous work coupling both

ScEM and SiViT.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

We deploy this complex system on two commodity HPC

environments, ARCHER and ARCHER2, based at the Edinburgh

Parallel Computing Centre (EPCC). ARCHER (EPCC, 2014)

had 118,080 CPU cores available. After the decommissioning of

ARCHER in 2021, we updated our simulation and ran the tests

on its successor, ARCHER2 (EPCC, 2014) which has 750,080 CPU

cores available to use (Section 4.1 gives more details of these

systems). Our simulation makes use of up to 21,953 computational

cores on each of these systems.

Independently, ScEM and SiViT model different elements of

this system, ScEM models the cytoskeleton and internal/external

forces of a cell. SiViT simulates a signaling model over time that

tracks the protein concentrations and the effect of drugs on a

cell but provides limited information on the growth of a cancer

spheroid. Van Liedekerke et al. (2015) explain that signaling models

are affected by external physical pressures on a cell, therefore our

SiViT simulations affect the physics model and vice-versa.

SiViT is driven by a signaling model written in the Systems

Biology Markup Language (SBML) which comprises a number of

differential equations that represent the protein concentrations and

their rate of change over time. SBML is a standard that has been

used to model signaling pathways for different types of cells over

time (Machne et al., 2006). Our project draws upon our experience

with SiViTs use of the SBML model. We link the two models

through the simulation framework, giving the domain expert tools

to plug in SBML models and select which parameters can be

influenced by the cell physics model (ScEM).

Realistic simulations of cancer growth require models of

both systems (signaling and physics) leading to large and multi-

scale models that are computationally intensive. The existing

implementation of SiViT requires the simulation to be run in

advance and the data output at the end is visualized graphically. The

framework we present will further the capabilities of SiViT allowing

changes to be made to the simulation in real-time.

In the context of drug discovery, an interactive simulation

is particularly useful when exploring the emergent behaviors

resulting from complex interactions between agents. For example,

combination therapies use the effects of multiple drugs taken at

different times; the effects of these upon the cells can be more

effectively seen in an interactive simulation (Bown et al., 2017).

This paper focuses on the distribution of the computation

and the communication protocol to support real-time user

interaction. We deploy our simulations on the ARCHER and

ARCHER2 HPC systems, which use batch scheduling; we therefore

evaluate interactive performance by emulating the performance

characteristics of a visualizer using a CPU node. Complementary

work is focused on developing a high-fidelity visualization using

state-of-the-art hardware acceleration and rendering techniques.

Combining these two approaches will result in a Digital Twin of

a 4D tumor which can be intuitively interrogated by clinicians.

1.2. Objectives

This work presents a computational framework and

communication protocol to simulate a 4D Tumor whilst

permitting user interactions in real time. The framework should

produce identical results to a non-parallel simulation and the

performance overhead should be minimal. The following questions

are asked of the framework:

1. Is the simulation deterministic, and does it produce the expected

results?

2. Does the simulation scale strongly when we keep the problem

space constant but increase the available computational

resources?

3. Does the simulation scale strongly as we increase the number

of cells in a simulation while increasing the computational

resources?

4. What overhead is introduced by the visualization LP?

5. How long is the round-trip of a real-time user event from the

visualizer node?

6. Can the system simulate a typical cancer spheroid (1 million

cells) via interactive simulation?

2. Background

In conservative agent-based simulations, LPs need to ensure

that all the data required to update the state of an agent has been

obtained prior to the computation of the next time step. Typically,

in parallel agent-based simulations, this is done by passingmessages

between processes. Time step accuracy can be achieved only

when the agents in an LP share the state of their bordering

agents with surrounding LPs. Parallel agent-based simulations have

been used increasingly for a bottom-up approach to simulate

systems biology including immune systems that represent cell-cell

behavior (Kabiri Chimeh et al., 2019). Many parallel ABMs make

use of delivering messages between LPs using the standard MPI

(Clarke et al., 1994) giving support for running the simulation on

commodity HPC systems such as ARCHER at EPCC (2014).

In parallel event-based simulations, two traditional methods,

Optimistic Synchronization (Jefferson, 1985), and Conservative

Synchronization (Bryant, 1977; Chandy and Misra, 1979) have

been used to achieve timestep accuracy. A combination of these

two methods has been discussed by Jefferson and Barnes (2017).

Hybinette and Fujimoto (2002) have implemented the technique

called Optimistic Input-output (OIO) which makes use of Georgia

Tech Time Warp (GTW), a Time Warp system designed for

shared memory processors as described by Das et al. (1994). OIO

focuses on latency hiding by allowing the simulation computation

to go faster than the visualizer and roll back to the desired point

of IO. OIO demonstrates this using an interactive environment

simulation involving human training and ballistic missiles. The

state of the simulation in this example does not change as often as

in a densely packed cell physics simulation. Hybinette and Fujimoto

(2002) describes the two synchronization protocols as conservative

where LPs wait to process events until reception of an out-of-order

event is impossible (Bryant, 1977; Chandy and Misra, 1979). The

optimistic protocol, in contrast, uses a detect-and-recover scheme

(Jefferson, 1985).

This method works very well for Parallel Discrete Event

Simulations (PDES); however, the number of messages exchanged

to maintain the state change in a dense agent-based simulation

(such as the cell-physics simulation) is much higher than the

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

messages exchanged per time step in a PDES. PDES assume that

the state of the simulation only changes at discrete points, the

simulation model jumps from one state to another upon the

occurrence of an event (Fujimoto, 1990).

Cell-physics models such as ScEM have a high density of

agents that constantly interact with each other, hence changing

the simulation state frequently. Thus a high volume of messages

is required to ensure the determinism of the simulation.

Our project uses a method similar to OIO, where interactivity

is enabled using a rollback mechanism. This is done over a

parallel dense agent-based simulation using MPI to enable such

interactions over an HPC system such as ARCHER at EPCC (2014).

Network latency will be minimal because of the fast interconnect

between nodes. For example, ARCHER makes use of a Cray Aries

interconnect which uses PCI-e 3.0, and is seen frequently in high-

performance clusters.

2.1. Existing simulation and visualization
techniques

Many biomedical simulations make use of MPI and parallel

computing. Shen et al. (2009) uses MPI to distribute a complex

model of the heart using non-blocking communication to ensure

synchronization between processes. There is a central process

that is responsible for calculating intermediary results and

communicating them to all the other processes. This becomes a

bottleneck for the scalability of their algorithm.

Similarly, Gutierrez-Milla et al. (2014) demonstrate the use

of MPI for crowd simulations and reports the time taken

and scalability on different configurations. Unlike Shen et al.

(2009), they use a node-node interaction pattern which, if

mapped to a corresponding topology, would scale well as

long as communication is limited to its immediate neighbors

in the Euclidean space. We employ a similar technique for

communication, limiting it as much as possible to its immediate

neighbors in the given Euclidean space.

A cell physics model has been developed and parallelized

by Cytowski and Szymanska (2015, 2014) and its scalability has

been measured on a super-computer. At the end of their simulation

run, they produce a data file that can be viewed in a visualizer.

Their focus lies on scalability and performance, so they do not

accommodate for real-time visualization and interactivity.

Ma and Camp (2000) portray the feasibility of real-time

visualizations of time-varying data in a simulation over a Wide

Area Network by passingmessages and compressing the image data

that needs to be visualized. The technique used for transferring

data from a series of physically distant LPs to a visualizer is well-

defined by Kwan-Liu. However, it does not support interaction with

the simulation, which is a vital requirement for tools that explore

complex systems such as cancer cell signaling.

SpatialOS (Smith and Narula, 2017) provides smooth real-time

interaction by using client-side prediction (e.g., dead reckoning), at

the cost of non-deterministic simulation results. This is acceptable

for many applications such as simulating cities and urban planning

projects but limits its applicability to deterministic scientific

simulation.

In spite of SpatialOS being a viable candidate, the tool has

a centralized system that controls the flow of all the messages.

This causes an overhead layer to the simulation which could

send messages directly to its neighboring LPs in the grid.

Additionally, the centralized architecture controls the flow of

messages, which limits the types of synchronization algorithms

available to the programmer.

SpatialOS is a framework that is used to develop MMO games

and does not have accurate synchronizations between LPs. It uses

client-side prediction algorithms (e.g., dead reckoning) to ensure

a smooth flow in the game-play instead of maintaining time-step

accuracy for scientific simulations.

Another important feature of SpatialOS is its dynamic load

balancing. This is done by calculating the processing power in

different euclidean regions of the world and dividing the workload

amongst the workers while maintaining a balance. Even though this

feature is highly beneficial for a general population of MMOs the

periodic re-calculation of the workload is an unnecessary overhead

for a densely populated biomedical simulation.

3. Methods

In our implementation, we conduct two major experiments on

ARCHER and ARCHER2 platforms respectively. ARCHER, being

the older HPC system that was decommissioned in January 2021,

had a simpler simulation where the inter-cellular and intra-cellular

physics interactions have been modeled and simulated at scale.

ARCHER2 on the other hand has a more complex implementation

where cell growth, division, and signaling were incorporated on top

of the pre-existing ARCHER simulation. For the remainder of the

paper, we will refer to the ARCHER simulation as simple, and the

ARCHER2 simulation as complex.

3.1. Cell models

3.1.1. Cell physics model
The Sub-cellular Element Model (ScEM) (Newman, 2007)

describes the physical structure, growth, and division of cells. It

also accommodates the interaction forces between two cells placed

in proximity.

There are a number of large-scale simulations that model cell

forces in a similar approach. As described by Ghaffarizadeh et al.

(2018), cells are agents which directly interact with surrounding

cells and have a volume of their own. This enables them to host

a higher number of cells in their simulation (500,000 in 4 cores).

ScEM calculates its forces on a sub-cellular level (an agent is an

element of a cell) which makes the simulation computationally

expensive. Similarly, Li (2015) uses an agent-based approach to

define inter-cellular and sub-cellular physical interactions in a

vascular structure. Cytowski and Szymanska (2015, 2014) have

created a large-scale cell physics model with 109 cells on high-

performance supercomputers and measured its scalability and

timing with an increasing number of LPs. Most of these models

utilize a similar communication and distribution technique as

ScEM which suggests that the user interaction method that we

propose can be extended into the aforementioned simulations.

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

FIGURE 1

Representation of the physical forces defined in ScEM (Newman,

2007) between two cells α and β. Each cell is made up of

sub-cellular elements whose velocity is dependent on either

inter-cellular or intra-cellular forces. As the cells grow, the number

of elements introduced increases until the cell is large enough to

divide. The elements do not represent any of the internal signalings

of the cell, but collectively they form the structure of a cell’s

cytoskeleton.

3.1.1.1. An element

An agent in this simulation is a sub-cellular element described

in ScEM. A single biological cell starts with 128 elements each of

which represents a part of the cell’s volume. Elements affect the

surrounding elements by using an equilibrium force that forms

the shape of a cell. More information on these forces can be

found in Newman (2005, 2007). When a cell grows, the number

of elements increases to a maximum of 256 after which the cell

will divide through cytokinesis. Figure 1 illustrates the inter-cellular

and intra-cellular forces in ScEM that maintain the shape of a cell.

For each LP, elements in the border of the domain space collect

information from the agents that reside in the neighboring LPs.

This information is passed in the form of messages through MPI.

A typical message sent between LPs would consist of information

from an array of agents that are within a threshold distance from the

border between these LPs. For example, if LPA is sending amessage

to LP B, A will first determine the direction of B with respect to A.

If B is to the left of A, all elements that fall into the threshold near

the left border will be identified and sent as a single message from

LP A to B.

3.1.2. Signaling model
The signaling model in this simulation is driven by SBML. We

use the same model as SiViT which was originally described by

Goltsov et al. (2011). We deploy LibRoadRunner (Somogyi et al.,

2015) to simulate the signaling model, and parameters from this

model have been selected which affect the growth and division

rates within the physics model, ScEM. These parameters and their

links are modifiable by the user. This connection between the two

models is not necessarily representative of the underlying biology

but it is typical of the type of connection the domain expert might

require. We provide the option to choose a combination of proteins

that can affect the growth and division of a cell. The size and

forces on a cell in the physics model can also in turn affect the

signaling model. This is easy to modify within our framework.

Domain experts can also plug in another SBML model and define

how the parameters of their new model can feed into the cell

physics simulation.

The tests on ARCHER did not include the signaling model.

However, on ARCHER2, we have the signaling model working

simultaneously with the physics model. In this complex simulation,

a signaling model is instantiated for each physics cell and

resides on the same LP as the physics cell. The signaling

model is simulated every few timesteps, based on a simulation

time threshold. The physics cell is the only external object the

signaling model communicates with; for this reason, the signaling

model does not need to communicate outside its own cell.

Each physics cell is uniquely affected by its signaling model,

and vice-versa.

3.1.3. Visualizer messages
The visualizer node (VLP) interacts with the rest of the

simulation by sending an event. This event is a single message

broadcast to all the affected LPs of the simulation. In this

experiment, an event triggers a rollback in the simulation. The

message broadcast consists of the timestamp from the visualizer to

which the simulation needs to roll back. Ideally, this event could

contain the type of drug and locality which will instantly affect the

simulation nodes.

3.2. Initial condition setup

The simulation is made up of cells embedded within a

three-dimensional Euclidean space. This space is first divided

into the number of LPs available and further divided into sub-

sectors to improve nearest neighbor search performance for each

agent (Rapaport, 2004).

For the purposes of performancemeasurement, we have chosen

to populate all LPs in the simulated space with densely-packed

cells, replicating the conditions that would be present during the

use of the system for drug discovery. This minimizes the need for

dynamic load-balancing as all the LPs will roughly be hosting the

same amount of agents.

Cells of uniform size are initially placed on a discrete 3D grid so

that they are just touching (see Figure 2A). Each axis where the cells

are aligned is displaced by the radius of a cell. One drawback to this

is that partial-cell gaps are left at the edges of the simulated tissue

(refer to Figure 2B), resulting in a lower load on LPs at the edge of

the simulation.

Once the cell’s initial position has been determined, each

MPI process then generates ScEM elements—presently with 128

elements in each cell. The number of elements increases as the cell

grows in size, to a maximum of 256 elements. Each ScEM element

interacts only with other elements within the constant interaction

radius R = 10µm. Elements in an LP can be categorized as:

• Internal elements only interact with other elements within the

same LP.

• Border elements interact with internal elements and also with

elements in neighboring LPs.

Frontiers inComputer Science 05 frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

FIGURE 2

Initialization of 27 cells with spheroids (A) not displaced and (B)

displaced over an axis. Each cell is represented by a di�erent color

and the red circles portray where the simulation load will be lesser

than the rest of the densely populated space.

Figure 3 demonstrates the distribution of the overall simulation

space (total) into four equal LPs along with their internal and

border elements based on the interaction radius ER. Using this

approach, the new state of internal elements can be computed

before any information has been received from other LPs. Only

border elements must wait for information to become available.

This is a latency-hiding approach: the ratio of internal to border

elements can be adjusted to ensure that LPs can continue to

perform computation while waiting for messages from other LPs.

3.3. Simulation volume decomposition

Cells in ScEM are made up of elements that in our simulation

will act as agents. We use a standard edge-exchange approach to

achieve communication between neighboring LPs. Cytowski and

Szymanska (2015) has divided the simulation space into a grid

where each process simulates a section of the grid while keeping

track of agents in its neighboring processes. Our approach is similar

to this.

ScEM elements communicate with agents in a radius around

it. For each element in the border of an LP, it is vital to have

the agent information from other LPs. On each iteration, LPs

communicate with each other and its cost largely depends on

the radius of interaction R and the spatial partitioning of the

Euclidean space. To statically distribute the load along the domain

space, the MPI processes take control of an equal division of

the simulation space. If the simulation is distributed among N

processes, the total simulation space with a volume total is

equally divided so that the simulated volume of one MPI process

would be LP = total ÷ N.

The MPI_Dims_create function is used for dividing the

space equally. Once the space has been statically allocated, the MPI

processes will decide the agents simulated within it. This method

maps well with the topology of how the LPs will be physically

positioned close to each other.

When the simulation is running there are two types of

communication between LPs. The first type is the selective data

required by bordering processes. Here, minimal data is collected

from each agent in the bordering regions and sent to the MPI

processes that require it. The second type of communication—

migration—is triggered when an agent’s position moves from the

authoritative region of one LP to another. Here, the agent’s state

and all its histories are transferred from one process to another.

This will ensure that each agent is in the right LP to receive

the information it needs to compute the next time step. Rousset

et al. (2015) have identified the need for agent migration to ensure

smooth proceedings of an ABMwhile using HPC clusters andMPI.

The frequency of migration needs to be minimal because this

transfer may stall the simulation. Stalling is essential as migrating

agents could fall into the interaction radius of an internal agent.

Without having the migrated state of an incoming agent, the

internal agents would not have all the information they need

at the beginning of the time step which in turn would affect

the determinism of the simulation. If the maximum allowed

displacement of an agent per time step is known, it will be possible

to predict which agents will not be affected by any incoming

migrating agents. Latency-hiding methods can then be used to

improve the performance of this simulation.

A part of the communication overhead depends on the number

of nodes with which an MPI Process needs to communicate.

This is decided by the neighboring processes that surround an

individual simulation space LP. In ScEM, on each iteration, the

processes require two phases of communication. This is simply

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

FIGURE 3

Representation of the simulation space in two dimensions. The complete simulation domain space is divided into 4 LPs (N1..4). N1 displays the

internal and border elements with their interaction radius R. If an element falls within the radius R of the neighboring LPs, it will be categorized as a

border element.

because a timestep in ScEM consists of two integration steps, each

step termed as a half-step. To compute the integration state, each

element as designed in ScEM requires the state of all the elements

around it (within the R = 10µm threshold). This requires the

communication of the minimal border data twice and migrating

agents twice across the LPs for each timestep.

3.3.1. Size of messages
Spatial decomposition subdivides the simulation space into

smaller sections which are simulated on separate MPI ranks

(termed as LPs). An element in ScEM can only interact with

other elements around it that lie within the 10µm range, thus the

threshold for bordering agents can also be safely presumed to be

a distance of 10µm away from the border of the enveloping LP

border. As ScEM is a physics model of a cell, each element takes

up a certain amount of space within the simulation. This can be

calculated as follows: the radius of a cell is R = 10µm and the

number of elements in a cell is Ncells = 128, roughly every element

takes up the volume of 32.72µm3.

Each LP on MPI takes up ∼ 384, 500µm3 simulation space

(LP). This volume was determined by running preliminary tests

to find an ideal size of the simulation (refer to Section 4.2 for

more information). Estimating the shape of the LP as a cube,

we get a single side of 72.416µm. As we have one side, the

number of elements that can reside on the bordering elements can

also be calculated as we know the dimensions of the bordering

threshold cuboid. The volume of a bordering cuboid can be

calculated using 72.416 × 72.416 × 10 = 52, 874µm3. If we

divide this by the volume a single element takes up, we get

the number of cells that reside in the bordering elements: ∼

1, 652 elements.

First, all the elements to be sent are identified and their

data is collated in an array-like structure. The information sent

to capture the state of each element consists of 112 bytes of

data. Each message sent to a neighbor could range from (0 →

1652) elements based on the density of the simulation. Worst

case scenario, the size of a single message would be 185,024

bytes or 185 KB. Messages are sent from an LP to all its

neighboring LPs. The number of Neighboring LPs can range from

(8 → 27) in a large-scale 3D simulation. With 27 neighbors,

an LP will send and receive ∼ 5 megabytes on each time step.

These parameters can be modified without compensating for the

correctness of the models. Newman (2007) explains the set of

parameters in ScEM and their effect on the accuracy of the

cell-physics model.

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

3.4. Communication within the LPs

With a simulation scaling well by limiting the interaction of the

LPs to its immediate neighbors, focus needs to be brought to the

visualizer and collection of selective data. The Visualizer LP (VLP)

may be further away from the frustum of the simulation which

increases the time variability for receiving these messages. As the

messages are being sent in a non-blocking method, the latency will

not affect the speed of the running simulation, but the latency may

be visible to the visualization user.

To establish a real-time interaction with the distributed

simulation in spite of being on an older time-step, this project uses

the following synchronization strategy.

3.4.1. Communication between simulation nodes
The simulation is now divided into two types of LPs, Simulation

LPs (SLPs) and Visualizer LP (VLP). The simulation LPs will

continue to operate synchronously while communicating with

other SLPs surrounding it. SLPs store a history of the states of

each agent and communicate with the VLPs at regular intervals.

SLPs communicate with VLPs in a non-blocking approach

which makes the simulation independent of the visualizer’s

speed. The flow of the simulation on a single Simulation LP

for the ARCHER (simple) simulation is explained in Figure 4

where the initialization step has been explained in Section

3.2. The system then checks which integration step has been

reached by ScEM followed by sending and receiving of the

border and migrating elements. There are 2 synchronous steps

W1 and W2 where the simulation may stall until all the

required information has been received by the SLP. Additionally,

Figure 5 explains the communication patterns between multiple

SLPs where W1 and W2 are reiterated. On ARCHER2, the

same simulation is compounded with cell growth, division,

and signaling.

3.4.2. Communication between visualizer and all
SLPs

SLPs send data to the VLP at a set interval of time steps.

The interval can be dynamic to accommodate for variance in the

simulation speed, but for the scope of this paper, we will keep

the visualizer update interval a constant (1Ti = 100). The VLP

maintains a list of SLPs to communicate with. If the SLP is within

the frustum of the visualizer, the SLPwill send the state of the agents

within the viewport to the VLP. This list is updated as the visualizer

moves from one part of the dense simulation to another.

On every visualizer interval timestep, the SLPs in the update

list only send the current state of their agents, no histories are sent.

The visualizer receives this data every 1Ti and visualizes this to

the user in the received order. Figure 6 explains the communication

between a VLP and multiple SLPs.

In our implementation, we use a fixed frustum to conduct our

experiments.

FIGURE 4

Flow of the simulation time-step within an SLP on ARCHER. In

ScEM, there are two integration steps for each timestep, within the

simulation space, each integration step will be termed as one

half-step. W1, W2, and UE are points where the simulation might

need to wait until all data from neighboring LPs has been received.

This is better explained in Section 3.6.2.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

3.5. Roll-backs for real-time interaction
with the 4D tumor

The VLP is responsible for sending user-defined interactions

to the simulation. This method achieves real-time simulation

interactions using an optimistic IO approach (Jefferson, 1985;

Hybinette and Fujimoto, 2002) where the state of each agent in the

SLPs is saved for every time-step that has not yet been received by

the VLP. When the VLP broadcasts an event (Et) to the SLPs, they

roll back every agent to the notified time-step (t) and then progress

with the simulation.

With this method, a majority of the simulation takes place

using a conservative method, whereas only the user interactions

will be handled using an optimistic approach. The number of

states stored for each LP will be limited to the distance between

the current SLP timestamp and the time-stamp of the VLP (Tvlp).

To limit the memory overhead caused by the histories stored, we

can further limit the simulation in a conservative approach if the

SLPs’ time-stamp exceeds the VLP time-stamp by a high threshold.

When this condition is triggered, the SLPs will wait for the VLP

to progress—effectively combining the conservative and optimistic

approaches.

The depth of history saved for each agent would add an

overhead to the memory required by an LP. In ScEM, the elements

store position data, velocities, cell-type descriptors, strength, and

indexes for their parent cell. A history state is stored at each

visualizer update interval. The number of history states required

can be reduced if the update interval is increased. Each agent has a

Maximum History allowance, after which the SLP will wait until it

is safe to save another state.

The histories of an agent will be migrated when the agent

crosses the border between two SLPs. This can affect the amount of

data transferred over the network while migrating agents. However,

based on our observation, this condition is triggered less frequently

in our implementation of the simple and complex cell simulation.

For the case of drug discovery, end users will be able to pause

the visualization, analyze the changes and events that need to

be administered and resume the simulation, getting results back

within a reasonable time frame after dispatching the event. From

our observation in SiViT (Bown et al., 2017), a reasonable round-

trip time frame for domain experts while interacting with a single

cell was∼ 1409ms.

3.6. Communication and overhead
optimizations

Agent-based parallel simulations face some common

bottlenecks because of the distributed memory hardware

architecture. In this section, we describe how we alleviate

these issues.

3.6.1. Nearest neighbor search
To optimize the performance of the simulation, the

neighbors are subdivided into grids using the particle-in-cell

method (Rapaport, 2004). This method is known to have the

computational complexity of O(N2) where N indicates the number

of agents in the data structure. We limit the number of elements N

in a data structure by subdividing the space into smaller particle-

in-cells. Tree-based algorithms can add a benefit to neighbor

searches. Cytowski and Szymanska (2014) uses such an algorithm

for finding neighbors in a large-scale agent-based cell model not

very different from ours. However, in a tree, at each step, there is an

added cost of maintaining and potentially rebuilding the structure.

3.6.1.1. Neighbors and communication bottlenecks

Even though a cell in ScEM forms the shape of a sphere, in this

simulation the total domain shape (total) is a cube. Using a cube,

the volume of an individual LP (LP) and the MPI_Rank of its

immediate neighbors can easily be determined from their position

in the grid.

The shape of the LP affects the neighbor searches for that

LP. The interaction radius ER of an element in ScEM is always

constant. When dividing the total equally among LP processes,

the shape of the divided volume (LP) is set as a cuboid of

unequal bounds. This affects the number of neighbors an LP would

communicate with and the latency hiding technique within each LP,

i.e., internal and border elements. An LP can only communicate

with neighboring LPs that share a border with it. Based on how

total is divided, an LP can have a variable number of bordering

neighbors. We use the MPI_Cart_create function to equally

divide total into . The ideal shape of LP would be a cube

but that will only be possible when the total number of LPs is a

perfect cube. The greatest bottleneck would be when LP is a prime

number. In this case, by using the MPI_Cart_create function,

the overall space will be divided into (LP,1,1) across the dimensions.

Figure 7 portrays this in two dimensions. When the dimension of

LP is smaller than the radius of interaction, it would not have

enough volume to host internal elements. This would invalidate the

latency hiding technique in an LP.

3.6.2. Deadlock avoidance
Simulation LPs send data between them to ensure that agents

at the start of a timestep have the information they need in the

Euclidian space around them to continue the simulation. In MPI

this is done by sending messages using a non-blocking approach.

In the unlikely event that no information is required to be sent, we

use a null message to allow the simulation to proceed.

Figure 5 shows how a simulation node will communicate with

surrounding simulation nodes. Here W1 is a wait point where the

simulation might be stalled for information from neighboring LPs.

While the simulation proceeds in a non-blocking approach, an

MPI rank posts an IRecv and then continues to process internal

elements. After processing the internal elements, we test if the

messages from all neighboring LPs have been received. If not, the

simulation will wait at W1.

Similarly, for migrating elements, the simulation will wait for

all the messages from the neighbors to be received at wait point

W2. See Figure 4 to better understand the flow of the simulation.

This non-blocking communication is generally easily achieved

by using a combination of MPI_Probe and MPI_IRecv

for messages which can be anticipated. However, non-blocking

protocols can take control away from the program. We are also

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

FIGURE 5

Interactions between SLPs on each half-time-step. K is the total number of time steps we run the simulation for. W1 and W2 are two independent

wait points in the simulation where LPs are waiting for information to be received from other LPs. W1 is waiting for the state of bordering elements,

while W2 is waiting for Migration elements. In both cases, the simulation cannot proceed until all information has been received from the

neighboring LPs. UE is a point in the simulation which checks for incoming User Events.

working with messages that are not anticipated—real-time user

events. These are also sent in the form of a message from the

visualizer to the rest of the simulation.

If a user event is dispatched from the visualizer to the rest of the

SLPs, each SLP might intercept this message at different points in

the simulation. This means that SLPA could be stuck in wait point

W1, while the message it is waiting for will not be received as the

neighbor has already intercepted the user event and has rolled back,

thus SLPA would be in a state of endless wait for a message that will

not be delivered.

We resolve this by testing for the user event every time there

could be a potential wait point between SLPs.We do this by looping

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

FIGURE 6

Interactions between the Visualizer LP (VLP) and all the Simulation LPs in the simulation. The event is broadcast from the visualizer but can be

intercepted at any of the simulation wait points (W1,W2,UE) and immediately rolled-back to avoid deadlock. These wait points are the same as the

ones found in Figure 5.

through all the neighbors and testing if a message has been received

using MPI_IProbe and MPI_Test. This gives us the flexibility

of having a variable message size by using IProbe (thus, a null

message which is faster to deliver), and MPI Test instead of MPI

Wait would be done intermittently while waiting and receiving

data from neighbors. This can also be done using MPI_Waitany;

however, that would take away the possibility of sending a null

message as the use of MPI_Probe would take control away from

the program and newer MPI_Waitany calls will not be invoked.

Looking at Figure 6, we intercept the User Events (UE) at three

points in the SLPs, W1, W2, and UE.

3.6.3. Message cancellations
Our implementation of this simulation warrants the rare use

of MPI_Cancel. When an SLP successfully intercepts a message

from the visualizer, before rolling back its current state, the

simulation would have to cancel any messages sent out or incoming

messages that would have been sent out prior to rolling back. This

ensures that any message residues do not affect the state of the

simulation after rolling back and all message queues are flushed for

a fresh start after the rollback.

Generally, messages sent just before rolling back can be

discarded. However, elements that migrate from one LP to another

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

are transferred in the form of a message too. If this message is

discarded, it is possible that an element with its history is lost and

hence, cannot roll back that particular agent.

We tackle this by recovering this message on the sender or

receiver end. On the sender end, we cancel the sent message using

MPI_Cancel and then if the cancel succeeds (the message has not

been sent yet), we recover the element details from the send buffer

before clearing it. Similarly, on the receiving end, if the message has

already been received in the Recv buffer, but not yet copied into the

list of elements, we recover the message on the receiving end and

add it to the list of elements at the receiving LP.

At the point of rolling back, each element’s state is rolled

back and its position is altered. Immediately after rolling back,

all the elements in the wrong LPs will be migrated back to their

authoritative LPs.

Cray MPI on ARCHER and ARCHER2 use the eager protocol

to transfer messages between nodes. In the eager protocol, messages

are sent to the MPI rank even though a matching Recv has not

been posted. These messages are stored in the receive buffer until

a matching Recv is posted. This means that even though a message

is canceled on the sender’s end, there can be residues on the

receiving end. For our simulation, this led to problems as messages

that had been canceled were still being received out of order

after rolling back the simulation. We post a probe and a blocking

MPI_recv for ANY_RANK and ANY_TAG to flush these messages.

This ensures that the Recv buffer has been completely cleared out

before rolling back the simulation. This can also be solved using a

buffered send/recv.

3.7. Verification

Maintaining the deterministic nature of the scientific

simulation is essential. In spite of distributing the simulation

over N processes, the accuracy of the simulation output needs to

remain intact. We must ensure that the simulation is initialized

consistently and that its results are the same regardless of the

distribution structure.

To initialize the cells in a reproducible way, the ScEM elements

are initialized using a random seed which is derived from the

parent cell’s index. With the help of this, the cells can be initialized

in any node while having the same initial state for each of its

elements. As an alternative, we could read the initial states from

a file. To ensure that the consistency of the simulation has not

been compromised, the simulation was run with a range of different

sizes and numbers of LPs. The most sensitive output from ScEM’s

calculations (because it depends numerically on all the other

parameters) is the positions of the elements. After running the

simulation for T time steps, the absolute positions of all cell

elements are collected on a single node and written to a text file.

The relative error between the expected and acquired results are

calculated. With our final testing, we have observed that the relative

error on every test case scenario is an absolute zero. The benchmark

for expected results is obtained by recording the positions of the

cell elements after running the simulation for T time steps on a

single LP without any distribution. This benchmark is compared

using a diff tool to the output of the different test case scenarios.

FIGURE 7

2D total of square dimensions is divided equally where (A) is 52

and (B) is a prime number. R1 and R2 represent two radii of di�erent

lengths which a�ect the number of neighbors an LP communicates

with. This number increases with the order of the specified

dimension.

With an increasing number of MPI Processes (N = 1, 8, 16...256),

the simulation was executed for (T = 5000) iterations. Tests were

also conducted to ensure that the results of the simulation remain

deterministic after an event has been communicated during user

interaction. To test this, an empty event is dispatched which does

not make any alterations to the simulation but triggers a roll-back

in all the SLPs. The same range of simulation sizes was tested both

with and without synthetic events.

As the signaling and cell physics simulations use floating-point

computations, there is potential for numerical error (Cassandras,

2008) based on the ordering of floating-point computations. This

error was not observed in the test cases that we ran as the elements

are sorted in each LP using their unique identification number.

This form of sorting ensures that in spite of spatially distributing

the simulation, the order of floating point calculations will

remain the same, thereby giving the same deterministic results on

each run.

4. Results

The features of the HPC simulation framework to be

evaluated are scalability, deterministic verification, real-time user

interactions, and deadlock avoidance.

This section explains the four tests that were conducted first

on an existing HPC unit—ARCHER in Edinburgh (EPCC, 2014)

which has 118,080 CPU cores available to deploy the simulation on.

After the decommissioning of ARCHER in 2021, we updated our

simulation and ran the tests on its successor, ARCHER2 (EPCC,

2014) which has 750,080 CPU cores. Each test summarizes the

scalability of a different aspect of the simulation to answer the

questions posed in Section 1.2 which leads up to how the user

interaction would scale with a higher number of nodes.

4.1. Hardware of the HPC systems used

ARCHER was commissioned in 2014 and uses the Cray XC30

system. ARCHER consists of 4,920 nodes and each node has 24

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

CPU cores of 2.7 GHz (2 NUMA regions with 12 cores each,

2×Intel E5-2697 v2). Each node of ARCHER has 64 GB of

memory and employs the Aries interconnect with a bi-directional

bandwidth of 15 GB/s per node.

ARCHER2 was commissioned in 2021 and uses the HPE Cray

EX system. ARCHER2 consists of 5,860 nodes and each node has

128 64-bit processors of 2.25 GHz (8 NUMA regions with 16 cores

each, 2×AMD EPYC Zen2-Rome 7742). Each node of ARCHER2

has 256 GB of memory and employs the HPE Cray Slingshot

interconnect with a bandwidth of 100 GB/s per node bi-directional.

Even though ARCHER2 supports hyperthreading, we do not use

it for our simulations as we observed an improved speedup in

performance by using the individual physical cores.

4.2. TEST I: speed-ups and verification

The results from this test answer questions one and two earlier

posed in the objectives (Section 1.2).

(Q1) Is the simulation deterministic, and does it produce the

expected results irrespective of domain decomposition?

(Q2) Does the simulation scale strongly while keeping

the problem-space constant and increasing the computational

resources?

While simulating the same number of cells in constant total,

we increased the number of MPI nodes LP = {1, 8, 16..256} to

divide the workload of the simulation. The time taken for a single

time step TLP is recorded after simulating T = 5, 000 steps. total

does not change, but when distributing the work, the volume of a

single LP (LP) will decrease when LP increases. After a certain

point, the interaction radius of an agent will be large enough to

require information from the second-degree neighbors in the grid.

This causes a major overhead in the simulation as there will be no

internal elements to hide the latency of incoming messages. From

the results in Figure 8 we can see at LP = 8192 the simulation slows

down as there are very few elements that reside within an LP, only

∼ 1/5th of a cell is being processed on each LP.

This test helps determine the optimal balance between internal

and border elements in an LP. We found that for hiding the local

latency, after a point, reducing LP will have a negative impact

on the performance. From the results of this test, we determined

a constant volume LP which held enough agents internally for

efficient latency hiding in our local setup. This value will be used

in the tests below to see how our simulation scales. Essentially, in

this experiment, we are keeping the problem size constant while

increasing the number of processors.

4.2.1. Test I—ARCHER
The simulation of 103 cells shows strong scaling results

(Figure 9A). The simulation gets faster with an increasing number

of LPs. ARCHER uses a network called the Cray Aries Interconnect

where the latency between MPI nodes is ∼1.3µs which is much

faster than an Ethernet connection (EPCC, 2014).

From these results in Figure 9A, there appears to be an

advantage in speedup after further subdividing the simulation’s

domain space. In spite of reaching a second-degree neighbor

threshold, the communication latency is very small because of

which a speedup in overall performance is prominent. This test

verifies that supercomputers that have a fast interconnect such

as ARCHER can lead to computational speedups as long as the

communicating MPI nodes are physically close to each other.

When plotting a speedup graph for this test (Figure 10A), we

notice that the speedup value increases linearly with up to 512 LPs.

4.2.2. Test I—ARCHER2
The experiments conducted on ARCHER2 were held

approximately a year after the ARCHER experiments. ARCHER

was decommissioned in January 2021, and ARCHER2 was installed

soon after. After obtaining the results from ARCHER, we made

a few additions to our simulation. Originally, the ARCHER

simulation did not accommodate growth and division within

the physics model. The tests on ARCHER2 on the other hand,

implement growth, division, and the signaling model. The results

that we obtained on ARCHER2 can be found in Figure 9A where

we simulated 123 cells.

We plotted the speedup values for the two simulations

which can be seen in Figure 9. The simulation on ARCHER2 in

Figure 10A shows that the simulation stops speeding up after LPs =

6144. We broke the simulation down even further and recorded the

amount of time it took for each segment of the simulation (ScEM,

SiViT, and Communication Overheads). The results for this can be

seen in Figure 8. Here, at LPs = 8, 196, each LP hosts only 1/5th of

a cell, and the communication overheads no longer help speed up

the simulation.

The first experiment demonstrated that the number of cells per

process could be adjusted to hide the communications latency in a

cluster while using non-blocking communications.

4.3. TEST II: scaling up the 4D tumor
simulation

The results from Test II answer the third question posed in the

objectives (Section 1.2).

(Q3) Does the simulation scale strongly as we increase the

number of cells in a simulation while increasing the computational

resources?

Having found a constant volume that balances inner and border

elements efficiently, this test checks whether this algorithm scales

well with a larger number of cells. In this test, we keep the agent

density and volume LP of an LP constant while increasing the

number of cells and overall simulation space. This ensures that the

total number of cells simulated per LP remains approximately the

same in spite of increasing the number of LPs at scale. To keep

the agent density constant, the side of a total simulation volume

(a cube) Stotal is calculated using Equation (1) where LP has been

determined in the previous test. Here,N is the number of LPs being

used for the simulation.

Stotal =
3
√

N × LP (1)

The number of cells NC populated for each test case

is given by Equation (2) where RC is the radius of a cell

defined by ScEM. This will lead to residual gaps on the

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

FIGURE 8

On ARCHER2, we see how the simulation speeds up while measuring the three major aspects of our complex system: ScEM, Signaling, and

Communication Overheads. At LP = 8192, the communication overheads outweigh the amount of time required to simulate ScEM as only ∼ 1/5th of

a cell is being processed on each LP. For Tests 2, 3, 4, and 5, we used the size of the simulation volume LP= 723µm3. This value was obtained from

LP = 48 from the graph above. This is because the amount of time taken to simulate the cells is ≃ the communication overheads. Approximately 40

cells were simulated in this volume (). The inset figure here is a zoom-in on the last four data points.

border of the simulation as explained in the initial condition

setup section.

NC =

⌊

Stotal

2Rc

⌋3

(2)

The time taken for each time step TLP is recorded while

changing the NC(Range: 2
3...133), Stotal and increasing the LPs

(where N = 1, 16...272). Keeping LP constant, we are ensuring

that each LP has an efficient balance of internal and border

elements. To understand whether the results are scaling well, in

Figure 11A, we normalize TLP by NC for each test case. This

gives us the time taken at each time step by a single cell in

the simulation.

4.3.1. Test II—ARCHER
In Figure 11A, the results from running this test on ARCHER

show that the scalability curve is improving over the number of

LPs because of the faster Interconnect between MPI Nodes. The

additional experiment carried out for 512 nodes further emphasizes

that the simulation scales well when simulating a larger number of

agents with equivalent additional resources.

4.3.2. Test II—ARCHER2
The tests conducted on ARCHER2 (Figure 11B) were of a

similar setup as ARCHER, except that the number of cells simulated

per LP was higher in ARCHER2. The number of cells is scaled

up linearly with an increasing number of LPs. As this test was

conducted after the ARCHER experiments, we were able to add

more data points to show the scalability curve across 512 LPs.

The amount of time taken to simulate an LP per timestep is

decreasing over time which shows strong scaling results over 512

LPs.

The second experiment showed that the simulation scales with

an increase in the number of processes while linearly increasing the

number of cells.

4.4. TEST III: scaling up when a VLP is
connected

The results from this test answer the fourth question earlier

posed in the objectives (Section 1.2).

(Q4)What overhead is introduced by the visualization LP?

To determine whether communication with the visualizer has

any effects on the scalability of the simulation, the previous test

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

FIGURE 9

Test I. This experiment tests for an ideal size in the simulation volume LP where the ratio of inner-elements:border-elements would be balanced.

This volume for LP is used in the following experiments. (A) Benchmark results from the ARCHER setup. The x-axis shows the number of MPI

processes used and the y-axis shows the total amount of time in milliseconds to compute one timestep of the simulation. For this setup, each

simulation band is run 4 times for 5,000 timesteps. The number of cells Ncells remains constant at 1,000. This simulation shows strong scalability

results. The dotted line in all the figures is the line of best fit calculated using the Loess method for all the points plotted in a graph. (B) ARCHER2

results which demonstrate that in spite of the inclusion of growth, division, and the signaling model, the simulation scales well and maintains a similar

computation speed as ARCHER in (A). Note that the number of cells being simulated here is higher than ARCHER. Here 123 cells are being simulated;

however, the main goal of finding an ideal size LP remains the same.

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

FIGURE 10

Speedups within Test I on ARCHER and ARCHER2. (A) Speedup of the simulation on ARCHER where Speedup = T1 ÷ TLP . Here the ideal speedup

indicates that doubling the number of processors would double the speedup of the simulation. This is in an ideal world where there would be no

communication overheads. (B) Speedup of the simulation on ARCHER2 where Speedup = T1 ÷ TLP . Here we stress-tested the simulation at a higher

number of LPs to see where the scalability curve starts to drop. At LPs = 6,144 (each LP here would simulate ∼1/3rd of a cell), we achieved optimal

performance, after which the speedup values started to drop as the number of elements simulated per LP are very low at LPs = 8,192 (each LP here

would simulate ∼1/5th of a cell).

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

FIGURE 11

Test II. This experiment increases the number of cells and LPs linearly using Equations (2) and (1) to populate the simulation space. This is tested over

a selected number of LPs and the normalized time taken to simulate a single cell for one timestep is recorded. (A) Box plots representing the

benchmark results for Test II on ARCHER where the number of cells increases with the number of LPs. Each simulation was run 6 times for 1,000

time-steps and the time taken for each time-step was recorded and normalized against the number of cells simulated. (B) ARCHER2 results for Test II

demonstrate the scalability curve for the simulation over up to 512 nodes.

setup (Section 4.3) is repeated with a visualizer plugged in. Here the

visualizer is an additional LP that receives data periodically from

selected simulation nodes. The VLP is viewing a part of the running

simulation where it receives data at a constant time-step interval.

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

4.4.1. Test III—ARCHER
On ARCHER and ARCHER2, this test requires some

alterations. Since both supercomputer systems use batch scheduling

and have limited connectivity to machines elsewhere on the

Internet, it was not practical for us to evaluate an interactive

graphic visualizer in these experiments. Instead, the functionality

and performance characteristics of a visualizer were emulated on a

CPU MPI node. The data from the required nodes are sent to this

emulated VLP and after a constant wait time, this VLP will send out

more MPI_Recv requests for the next set of data to be obtained for

visualization.

Figure 12A displays similar results to Test II in Figure 11A

where the time taken scales well with the simulation while an

additional constant time is added for each configuration.

4.4.2. Test III—ARCHER2
The results for this test on ARCHER2 in Figure 12B show that

incorporating a visualizer does not adversely affect the scalability of

the simulation.

The third experiment showed that the simulation scales

reasonably to the bounds of our cluster size when a visualizer is

plugged in without dispatching any user-defined interactions.

4.5. TEST IV: scalability of the 4D tumor
simulation for real-time user interactions

The fourth set of our results measures the round trip time of

a dispatched user event from the visualizer node. This answers the

fifth question earlier posed in the objectives (Section 1.2).

(Q5) How long is the round-trip of a real-time user event from

the visualizer node?

The same setup from the previous tests (scalability of SLPs

when a VLP is connected, Section 4.4) is used for this test with an

addition of user events being dispatched.

When an event is dispatched by the visualizer, a global

communication is triggered which broadcasts a message to all

the SLPs. Once this message is received by each SLP, a roll-back

is triggered which changes the state of each agent to match the

required timestamp. Once an SLP rolls back and completes a cycle

of simulation, it sends the new set of simulated data to the VLP.

We measure input-feedback latency by recording the amount of

time taken from the initial broadcast until the receipt of the next

visualization data.

For every test case, 25 synthetic events are sent and the response

time of the new visualization data is measured.

In our MPI-based implementation, an SLP might catch a user

event successfully while its neighboring SLP could be waiting for

data from its neighbors (i.e., a neighbor that has already rolled

back). This could lead to deadlock. Our way around this problem is

by testing for a user event message while waiting for any incoming

message. This can be implemented using the MPI_Waitany

function and user events can be caught and handled without the

prospect of deadlock.

In our current implementation, we are using a global

synchronization (MPI_Barrier) to ensure that all the messages

are received and rolled back without facing deadlock.

4.5.1. Test IV—ARCHER
When deploying this experiment on ARCHER, the same

changes to the VLP are made as explained with Test III.

The results in Figure 13A show that the response time for a user

event can vary based on the number of LPs and the type of network

the simulation is running on. ARCHER and ARCHER2 make use

of Cray Aries Slingshot networks which are optimized for collective

communications. EPCC has evaluated the communications with

MPI_Barriers on ARCHER at scale (Quan, 2014) and recorded

that the latency between nodes varies if the nodes are in different

cabinets or groups. Our results from Figure 13A show that the

simulation scales as well as the underlying network hardware,

where if the simulation is scheduled within the same cabinets of

the HPC unit, the response time is similar.

4.5.2. Test IV—ARCHER2
The results from Figure 13B show that the user event response

is consistent across the number of nodes, and the simulation scales

according to how it is scheduled on the compute nodes. The overall

rendezvous time for a user event is roughly between 2 and 3.5 s

which remains consistent across 513 LPs.

The number of cells simulated per LP on ARCHER2 is higher

than the ones in ARCHER. This is because the ideal LP is

different in both simulations. Because of this, the overall response

time and data sent between the visualizer and simulation nodes are

uniformly higher in ARCHER2.

The fourth experiment demonstrated that the response time for

user interaction scales well with the network latency and underlying

hardware, giving us a reasonable response time for a user event.

4.6. TEST V: ARCHER—Simulating up to one
million cells

With the four tests conducted above, we get a good idea of how

the simulation would scale on a smaller level with which we can

predict an estimate of how the simulation will scale on the targeted

hardware. However, this does not answer the original question.

(Q6) Can the system simulate a typical cancer spheroid (1

million cells) via interactive simulation?

To answer this question, a final simulation was conducted

which is similar to Test IV.

4.6.1. Test V—ARCHER
In Figure 14A, we are testing the amount of time taken to

simulate ScEM Physics elements when we scale up the simulation

from Nc ranging between Nc = {1, 331...1, 000, 000}. The number

of CPU cores used to simulate one million cells is 21,953. Here,

the Domain size of the base node was increased to accommodate

more agents in a singleMPI rank. Here, the size for one LP (LP)is

now exactly the same as what has been used for ARCHER2. As one

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

FIGURE 12

Test III. This experiment is similar to Test II (Figure 11) with an addition of a visualizer to the simulation. Selected simulation nodes send information to

the visualizer every few timesteps. (A) Box plots representing the time taken for one cell per time step on ARCHER while increasing the number of LPs

and cells in the simulation and also adding a visualizer that selected simulation nodes regularly send data to. Here the last node is the visualizer node

which is why the data points are denominations of (16×N)+ 1. (B) ARCHER2 results for Test III, which is a similar setup as (A) however, this

simulation accommodates growth, division and the signaling model on ARCHER2.

Frontiers inComputer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

FIGURE 13

Test IV. This test shows the roundabout time from the point of dispatching a visualizer user event to the point of response from the simulation nodes

with new data after rolling back the simulation and applying the requested changes. (A) Each simulation band is run 6 times with 5,000 time-steps. At

regular intervals, 25 user events have been sent and their average response time at the next visualizer update, after successfully rolling the simulation

back is recorded. The number of cells simulated is linearly scaled up with the number of nodes (Similar to tests 2 and 3 in Figures 11, 12, respectively).

(B) ARCHER2 results for Test IV, which is a similar setup as (A) however, this simulation accommodates growth, division, and the signaling model on

ARCHER2.

Frontiers inComputer Science 20 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

FIGURE 14

Test V. This experiment is similar to Test IV (Figure 13) but at a larger scale. Here, we compare the time taken for the response of a user event

depending on the number of cells being simulated. This requires LPs ranging from [33 → 21, 953]. (A) After obtaining preliminary results for the final

tests in Test IV, we have scaled up the simulation to fit within the limits of ARCHER. Here, we are simulating up to one million cells over 283 CPU

cores (∼ 22, 000). (B) The same setup that was used for ARCHER in (A) is being simulated on ARCHER2 with the inclusion of growth and division and

the signaling model. ARCHER2 tests were conducted a year after ARCHER tests. The data points selected in ARCHER2 were better planned to fit the

log scale well and give a more insightful picture of how the simulation scales.

Frontiers inComputer Science 21 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

cell consists of 128 → 256 elements, we are simulating over 128

million elements.

The results in Figure 14A show an upwards trend in response

time when more agents are simulated over a large number of LPs.

4.6.2. Test V—ARCHER2
The final test on ARCHER2 incorporates cell physics (ScEM)

and cell signaling (SBML Model). ScEM in this implementation

is fully featured with growth and division also implemented. We

simulate this complex system on a range of LPs while increasing

the number of cells simulated. In Figure 14B, we can see a slightly

better scaling ratio compared to ARCHER. where even at a larger

number of nodes and cells, the user event response is consistent at

approximately 3 s.

Additionally, we measured the communication overheads for

this simulation to see how the simulation scales while sending

user events. These results in Figure 15A demonstrate that the

input-feedback latency remains consistent beyond a threshold. This

threshold seems to be driven by the cabinet sizes on ARCHER. As

long as the simulation is hosted by a single cabinet, the round-

trip overhead between the VLP and the SLPs remains consistent.

Figure 15B demonstrates that the amount of time taken for a

timestep on each LP while scaling the simulation up is consistent.

This verifies that the amount of time taken for each LP remains

consistent up to a million cells (21,953 LPs).

In this experiment, we were able to successfully simulate

one million cells while verifying their deterministic nature and

interacting with the running simulation. The response time is 8 s on

ARCHER and 3 seconds on ARCHER2which, considering the scale

of one million cells (over 128 million ScEM agents) is a reasonable

time frame to see the effects of a user-defined event on a simulation.

5. Discussion

5.1. Conclusion

The focus of this work is on building a distributed multi-scale

framework to simulate large simulations such as cell signaling and

physics. The applications of this framework extend to support the

development of new cancer drugs and treatment regimes. This

simulation will enable domain experts to interactively explore and

visualize the effects of different treatments on a simulation of a

million-cell spheroid running on local clusters or cloud resources.

We draw interactive visualization and simulation techniques from

video game technologies and extend their interactivity to HPC

environments.

Optimistic synchronization is rarely used in agent-based

distributed simulations of complex systems because of the

large memory overhead. This paper shows how optimistic

synchronization can be used to enable real-time user interaction

with a conservatively-synchronized simulation. As the user

interactions will be relatively infrequent compared to the complex

system interactions, the memory overhead will be minimal.

We ran a distributed cell physics model ScEM (Newman, 2007)

with frequent agent-based interactions over ARCHER, anHPC unit

using up to 21,953 CPU cores to demonstrate the scalability of this

technique. We further developed the simulation by implementing

cell-growth, division, and a cell signaling model (Goltsov et al.,

2011; Bown et al., 2017) which was deployed on ARCHER2, the

successor of ARCHER available at EPCC in Edinburgh (EPCC,

2014), using up to 21,953 CPU cores. The high-speed interconnect

in ARCHER2 gives us better performance consistency and reliable

results (Section 4).

The message passing density of these applications is much

higher than the traditional Parallel Discrete event simulations.

In the cell physics model, the state of an agent changes

because of the smallest interaction with other agents in the

simulation. For instance, if a message is not received in

timestep order, an element will be processed wrongly based

on its previous state and the positions of its surrounding

elements will be incorrect after the forces are applied. This

will cascade very quickly across the simulation volume and

the overall state of the simulation will be incorrect after very

few timesteps.

The forces and communication between agents are similar to

other cell physics models (Li, 2015; Ghaffarizadeh et al., 2018).

Furthermore, similar implementations of large-scale distributed

cell models such as Cytowski and Szymanska (2015, 2014) can

easily implement our methods to enable real-time visualization and

interactivity.

To show the scalability of the user interaction technique we

set out a series of questions in our objectives (Section 1.2). These

questions have been revisited and answered below.

(Q1) Does the simulation recover the expected results?

One of our key considerations was to maintain the determinism

of the complex agent-based system. Regardless of the time taken

and scalability, we were able to achieve bit-wise identical results for

each experiment that we conducted. This was a result of efficiently

utilizing conservative synchronization while avoiding deadlock

across different wait points in the simulation. The ordering of

floating points made a significant difference in ensuring these

files are equal, as without this, round-off accumulation would

lead to very different results over time. There are simulation

fields that highlight the importance of bit-wise identical results

(Liu et al., 2015a,b).

(Q2) Does the simulation scale strongly while keeping the

problem-space constant and increasing the LPs?

The experimental setup in Test I (Section 4.2) is tailored to

answer this question. The results demonstrate that the simulation

speeds up well up to a point after which the problem space

is too small to compute a meaningful number of agents and

the communication overheads surpass the simulation time (see

Figure 8). At an optimum size, there needs to be a balance between

internal and border agents.

(Q3) Does the simulation scale strongly when we increase the

number of LPs with the number of cells?

Test II (Section 4.3) showcases that the simulation scales

strongly when increasing proportionately to the number of LPs.

This is further displayed in Figure 15B where the total amount of

time taken by the simulation remains the same when increasing the

number of LPs and the cells proportionately.

(Q4) Does the performance change when a visualizer is

incorporated?

Test III (Section 4.4) showcases that there are no adverse effects

Frontiers inComputer Science 22 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

FIGURE 15

Communication overheads with (A) and without (B) user interactions as we scale up to one million cells. (A) Figures 13B, 14B record the round-trip

time between sending a user event and receiving the next set of data from the SLPs. This also includes the amount of time taken between 2 visualizer

update intervals. This figure represents the overheads for a user event by subtracting the mean amount of time taken for a visualizer interval without

a user-event triggered. (B) The amount of time taken per LP to execute a time-step. This is scaled up until we simulate a total of one million cells. In

each case, we are simulating ∼ 40 cells on each LP. Here we can see that in spite of increasing the simulation size, while we add a proportionate

number of computational resources, the total amount of time taken remains the same. With the results seen from Figure 8, this simulation can be

sped up by using more LPs until each LP hosts a minimum of ∼1/3rd of a cell.

Frontiers inComputer Science 23 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

of using a visualizer when compared to the same simulation setup

in Test II.

(Q5) How long is the round-trip of a user event from the

visualizer node?

The results from Test V (Section 4.6) record the round trip

of a user event on large-scale simulations. The round-trip time

of a user event visible to the VLP on our ARCHER2 simulation

for 1 million cells (up to 256 million elements) was ≃ 3s. This

is derived from framework parameters that can be adjusted to

optimize the visualizer update interval. The round-trip includes the

time taken between two visualizer update intervals 1Ti and the

communication overheads of the user events (seen in Figure 15A).

The overhead of a response that we observed on ARCHER2 was

∼ 350ms. Comparatively, the user events deployed on SiViT

took an average of 1, 409ms for a single cell signaling model in

SiViT. In SiViT this time frame was considered acceptable by the

domain experts who participated in its evaluation. Our ARCHER2

simulation can further be tweaked to reduce the visualizer update

interval and improve the overall round-trip time of a user event.

The response time in SiViT would depend on the number of

timesteps simulated as SiViT precompiles the simulation data

before displaying it to the user. However, our simulation did not

observe this limitation as we are interacting with our simulation

in real-time.

(Q6) Can the framework simulate a typical cancer spheroid (1

million cells) interactively?

At the largest scale, the framework has simulated one million

cells effectively. The HPC systems, ARCHER and ARCHER2 used

up 21,953 LPs to simulate one million cells which compromise

the cell physics and signaling models. Every cell in our physics

simulation is composed of sub-cellular elements as described

by Newman (2007).

The system works well in a low-latency environment. However,

in a high-latency environment, the round-trip latency of a

user event will increase proportionately. This work shows that

an HPC environment has the infrastructure to execute our

communication protocol and respond within a reasonable time

frame. Alternatively, when executing this on an uncontrolled LAN

cluster, the round-trip time for a user event was approximately 12 s

for 256 LPs.

Even though we demonstrate our findings using a cell physics

and signaling model, the applications of our user interaction

technique are not limited to biomedical simulations such as

drug discovery. This technique can be used for other agent-

based, high-density complex systems that need to maintain

determinism and accuracy such as epidemiology and crowd

modeling. Furthermore, the approach can be used for large-scale

simulations underpinning Digital Twins; for example, the work

conducted by Falconer and Houston (2015) to create a digital

twin of soil-microbial complex or urban planning (Isaacs et al.,

2011) can be scaled up using this framework in a heterogeneous

HPC environment.

Similar large-scale ribosome simulations have been conducted

by Sanbonmatsu and Tung (2006) where they simulate up to

2.6 million atoms with a speedup of up to 867. Our simulation

in Test I gets a peak speedup of 564 where speedup is T1/TLP

(Figure 10B). GROMACS (Abraham et al., 2023) is one of

the more popular simulation packages available which makes

use of MPI for parallel distribution. At present, GROMACS

makes use of visualization software such as Rasmol, PyMol, and

ChimeraX to view the simulation data after the simulation has

been conducted. While the low-level models are different, the

simulation architecture used internally by GROMACS is broadly

similar to our existing case study, and we believe that it would

be practical to adapt it to use our communication algorithms

to enable real-time interaction and visualization in molecular

dynamics simulations.

5.2. Future work

We envisage this HPC framework to be running on a

cloud service while an end-user visualizes and interacts with

it in real-time on a local device. Parallelization of ScEM

depends primarily on how the latency hiding technique

is incorporated. On cloud services, the latency between

multiple nodes can be very high as each node is initialized

as a virtual machine which adds layers of communication

to the MPI-based simulation. As latency hiding in our

approach is controllable with the volume of an individual

LP (LP), measures can be taken to alter the overall spatial

decomposition so that the simulation scales with appropriate cloud

computing resources.

An alternative approach to parallelizing ScEM would be

utilizing GPU (Graphics processing units) resources over multiple

nodes in a cluster. This approach will employ MPI along with a

scalable GPU interface such as CUDA (Nickolls et al., 2008) where

each MPI process handles a large chunk of the workload and have

minimal data transferred between LPs. Using this heterogeneous

approach, the force calculations between elements can be sped

up; however, with the limited memory available in a GPU, the

histories would be stored in the system memory instead. In ScEM,

utilizing GPU resources would change the balance between the

internal and border elements. This will be a good area for us to

explore to speed up this simulation and achieve response times for

faster interactions.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

NM, AS, and RF contributed to the conception and design

of the study. NM and AS wrote the code for the simulations.

NM conducted the experiments, gathered the results, and wrote

the first draft of the manuscript. AS and RF wrote sections

of the manuscript. AB conducted experiments on SiViT and

provided additional benchmark data. All authors contributed to the

manuscript revision, read, and approved the submitted version.

Frontiers inComputer Science 24 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

Acknowledgments

This work was supported by the Northwood Trust.

This work used the ARCHER and ARCHER2 UK National

Supercomputing Service (https://www.archer2.ac.uk). Financial

support for the open access publication fee was provided by

Abertay University.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcomp.

2023.1085867/full#supplementary-material

References

Abraham, M., Alekseenko, A., Bergh, C., Blau, C., Briand, E., Doijade, M., et al.
(2023). GROMACS 2023 Source code. Zenodo. doi: 10.5281/zenodo.7588618

Bown, J. L., Shovman, M., Robertson, P., Boiko, A., Goltsov, A., Mullen,
P., et al. (2017). A signaling visualization toolkit to support rational design of
combination therapies and biomarker discovery: SiViT. Oncotarget 8, 29657–29667.
doi: 10.18632/oncotarget.8747

Bryant, R. E. (1977). Simulation of Packet Communication Architecture Computer
Systems. Technical report MIT/LCS/TR-188, MIT Laboratory for Computer Science.

Cassandras, C. G. (2008). Introduction to Discrete Event Systems, 2nd Edn. Boston,
MA : Springer US.

Chandy, K. M., and Misra, J. (1979). Distributed simulation: a case study
in design and verification of distributed programs. IEEE Trans. Softw. Eng.
5, 440–452.

Clarke, L., Glendinning, I., and Hempel, R. (1994). “The MPI message
passing interface standard,” in Programming Environments for Massively Parallel
Distributed Systems, eds K. M. Decker and R. M. Rehmann (Basel: Birkhäuser),
213–218.

Cordasco, G., Scarano, V., and Spagnuolo, C. (2018). Distributed MASON: a
scalable distributed multi-agent simulation environment. Simul. Modell. Pract. Theory
89, 15–34. doi: 10.1016/j.simpat.2018.09.002

Cytowski, M., and Szymanska, Z. (2014). Large-scale parallel simulations of 3D cell
colony dynamics. Comput. Sci. Eng. 16, 86–95. doi: 10.1109/MCSE.2014.2

Cytowski, M., and Szymanska, Z. (2015). Large-scale parallel simulations of
3D cell colony dynamics: the cellular environment. Comput. Sci. Eng. 17, 44–48.
doi: 10.1109/MCSE.2015.66

Das, S., Fujimoto, R., Panesar, K., Allison, D., and Hybinette, M.
(1994). “GTW: a time warp system for shared memory multiprocessors,” in
Proceedings of Winter Simulation Conference (Lake Buena Vista, FL), 1332–1339.
doi: 10.1109/WSC.1994.717527

EPCC (2014). ARCHER Cray XC30. Edinburgh Parallel Computing Centre.

Falconer, R. E., and Houston, A. N. (2015). Visual simulation of
soil-microbial system using GPGPU technology. Computation 3, 58–71.
doi: 10.3390/computation3010058

Fujimoto, R. M. (1990). Parallel discrete event simulation. Commun. ACM 33,
30–53.

Ghaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M., and Macklin,
P. (2018). PhysiCell: an open source physics-based cell simulator for 3-D multicellular
systems. PLoS Comput. Biol. 14, e1005991. doi: 10.1371/journal.pcbi.1005991

Goltsov, A., Faratian, D., Langdon, S. P., Bown, J., Goryanin, I., and
Harrison, D. J. (2011). Compensatory effects in the PI3K/PTEN/AKT signaling
network following receptor tyrosine kinase inhibition. Cell. Signal. 23, 407–416.
doi: 10.1016/j.cellsig.2010.10.011

Gutierrez-Milla, A., Borges, F., Suppi, R., and Luque, E. (2014). Individual-oriented
model crowd evacuations distributed simulation. Proc. Comput. Sci. 29, 1600–1609.
doi: 10.1016/j.procs.2014.05.145

Hybinette, M., and Fujimoto, R. M. (2002). Latency hiding with optimistic
computations. J. Parallel Distrib. Comput. 62, 427–445. doi: 10.1006/jpdc.2001.1801

Isaacs, J. P., Falconer, R. E., Gilmour, D. J., and Blackwood, D. J. (2011). Enhancing
urban sustainability using 3D visualisation. Proc. Inst. Civil Eng. Urban Design Plan.
164, 163–173. doi: 10.1680/udap.900034

Jefferson, D. R. (1985). Virtual time. ACM Trans. Program. Lang. Syst. 7, 404–425.

Jefferson, D. R., and Barnes, P. D. (2017). “Virtual time III: unification of
conservative and optimistic synchronization in parallel discrete event simulation,” in
2017 Winter Simulation Conference (WSC) (Las Vegas, NV: IEEE), 786–797.

Kabiri Chimeh, M., Heywood, P., Pennisi, M., Pappalardo, F., and Richmond, P.
(2019). Parallelisation strategies for agent based simulation of immune systems. BMC
Bioinformatics 20, 579. doi: 10.1186/s12859-019-3181-y

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 558–565.

Li, Y. (2015). Agent-based modelling of cell-cell interactions for in vitro vascular
formation and cancer cell growth (Ph.D. thesis). Abertay University, Dundee, United
Kingdom.

Liu, L., Li, R., Zhang, C., Yang, G.,Wang, B., and Dong, L. (2015a). Enhancement for
bitwise identical reproducibility of Earth system modeling on the C-Coupler platform.
Geosci. Model Dev. Discuss. 8, 2403–2435. doi: 10.5194/gmdd-8-2403-2015

Liu, L., Peng, S., Zhang, C., Li, R., Wang, B., Sun, C., et al. (2015b). Importance of
bitwise identical reproducibility in earth system modeling and status report. Geosci.
Model Dev. Discuss. 8, 4375–4400. doi: 10.5194/gmdd-8-4375-2015

Ma, K. L., and Camp, D. M. (2000). “High performance visualization of
time-varying volume data over a wide-area network,” in SC ’00: Proceedings
of the 2000 ACM/IEEE Conference on Supercomputing, 29. (Dallas, TX).
doi: 10.1109/SC.2000.10000

Machne, R., Finney, A., Muller, S., Lu, J., Widder, S., and Flamm, C. (2006). The
SBML ODE Solver Library: a native API for symbolic and fast numerical analysis of
reaction networks. Bioinformatics 22, 1406–1407. doi: 10.1093/bioinformatics/btl086

Newman, T. J. (2005). Modeling multicellular systems using subcellular elements.
Math. Biosci. Eng. 2, 613–624. doi: 10.3934/mbe.2005.2.613

Newman, T. J. (2007). “Modeling multicellular structures using the subcellular
element model,” in Single-Cell-Based Models in Biology and Medicine, eds (R. A.
Alexander, R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak), 221–239.
doi: 10.1007/978-3-7643-8123-3_10

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable
parallel programming with CUDA. Queue 6, 40–53. doi: 10.1145/1365490.
1365500

Pappalardo, F., Pennisi, M., and Motta, S. (2010). “Universal immune system
simulator framework (UISS),” in Proceedings of the First ACM International Conference
on Bioinformatics and Computational Biology, BCB ’10 (New York, NY: Association for
Computing Machinery), 649–650.

Quan, C. (2014). Network Interconnect Evaluation on ARCHER, University of
Edinburgh.

Frontiers inComputer Science 25 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://www.archer2.ac.uk
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1085867/full#supplementary-material
https://doi.org/10.5281/zenodo.7588618
https://doi.org/10.18632/oncotarget.8747
https://doi.org/10.1016/j.simpat.2018.09.002
https://doi.org/10.1109/MCSE.2014.2
https://doi.org/10.1109/MCSE.2015.66
https://doi.org/10.1109/WSC.1994.717527
https://doi.org/10.3390/computation3010058
https://doi.org/10.1371/journal.pcbi.1005991
https://doi.org/10.1016/j.cellsig.2010.10.011
https://doi.org/10.1016/j.procs.2014.05.145
https://doi.org/10.1006/jpdc.2001.1801
https://doi.org/10.1680/udap.900034
https://doi.org/10.1186/s12859-019-3181-y
https://doi.org/10.5194/gmdd-8-2403-2015
https://doi.org/10.5194/gmdd-8-4375-2015
https://doi.org/10.1109/SC.2000.10000
https://doi.org/10.1093/bioinformatics/btl086
https://doi.org/10.3934/mbe.2005.2.613
https://doi.org/10.1007/978-3-7643-8123-3_10
https://doi.org/10.1145/1365490.1365500
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Merchant et al. 10.3389/fcomp.2023.1085867

Rapaport, D. C. (2004). The Art of Molecular Dynamics Simulation, 2 Edn.
Cambridge: Cambridge University Press.

Rousset, A., Herrmann, B., Lang, C., and Philippe, L. (2015). “A communication
schema for parallel and distributed multi-agent systems based on MPI,” in Euro-
Par 2015: Parallel Processing Workshops, eds S. Hunold, A. Costan, D. Gimenez, A.
Iosup, L. Ricci, M. E. Gomez Requena, V. Scarano, A. L. Varbanescu, S. L. Scott, S.
Lankes, J.Weidendorfer, andM. Alexander (Cham: Springer International Publishing),
442–453.

Sanbonmatsu, K. Y., and Tung, C.-S. (2006). Large-scale simulations of the
ribosome: a new landmark in computational biology. J. Phys. Conf. Ser. 46, 334.
doi: 10.1088/1742-6596/46/1/047

Schroeder, W. J., Martin, K. W., and Lorensen, B. (2006). The Visualization Toolkit,
4th Edn. Clifton Park, NY: Kitware.

Shen, W., Lu, W., Wei, D., Xu, W., Zhu, X., and Yuan, S. (2009). “A parallel
algorithm for computer simulation of electrocardiogram based onMPI,” in 2009 Eighth
IEEE/ACIS International Conference on Computer and Information Science (Shanghai),
120–123. doi: 10.1109/ICIS.2009.110

Smith, A., and Narula, H. (2017). Improbable Solving Problems and Building Worlds
with SpatialOS @GDC ’17. Available online at: https://www.youtube.com/watch?v=_X-
NBGSmE6c

Somogyi, E. T., Bouteiller, J.-M., Glazier, J. A., Konig, M., Medley, J. K., Swat, M. H.,
et al. (2015). libRoadRunner: a high performance SBML simulation and analysis library.
Bioinformatics 31, 3315–3321. doi: 10.1093/bioinformatics/btv363

Van Liedekerke, P., Palm, M. M., Jagiella, N., and Drasdo, D. (2015). Simulating
tissue mechanics with agent-based models: concepts, perspectives and some novel
results. Comput. Particle Mech. 2, 401–444. doi: 10.1007/s40571-015-0082-3

Frontiers inComputer Science 26 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085867
https://doi.org/10.1088/1742-6596/46/1/047
https://doi.org/10.1109/ICIS.2009.110
https://www.youtube.com/watch?v=_X-NBGSmE6c
https://www.youtube.com/watch?v=_X-NBGSmE6c
https://doi.org/10.1093/bioinformatics/btv363
https://doi.org/10.1007/s40571-015-0082-3
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Dense agent-based HPC simulation of cell physics and signaling with real-time user interactions
	1. Introduction
	1.1. Case study
	1.2. Objectives

	2. Background
	2.1. Existing simulation and visualization techniques

	3. Methods
	3.1. Cell models
	3.1.1. Cell physics model
	3.1.1.1. An element

	3.1.2. Signaling model
	3.1.3. Visualizer messages

	3.2. Initial condition setup
	3.3. Simulation volume decomposition
	3.3.1. Size of messages

	3.4. Communication within the LPs
	3.4.1. Communication between simulation nodes
	3.4.2. Communication between visualizer and all SLPs

	3.5. Roll-backs for real-time interaction with the 4D tumor
	3.6. Communication and overhead optimizations
	3.6.1. Nearest neighbor search
	3.6.1.1. Neighbors and communication bottlenecks

	3.6.2. Deadlock avoidance
	3.6.3. Message cancellations

	3.7. Verification

	4. Results
	4.1. Hardware of the HPC systems used
	4.2. TEST I: speed-ups and verification
	4.2.1. Test I—ARCHER
	4.2.2. Test I—ARCHER2

	4.3. TEST II: scaling up the 4D tumor simulation
	4.3.1. Test II—ARCHER
	4.3.2. Test II—ARCHER2

	4.4. TEST III: scaling up when a VLP is connected
	4.4.1. Test III—ARCHER
	4.4.2. Test III—ARCHER2

	4.5. TEST IV: scalability of the 4D tumor simulation for real-time user interactions
	4.5.1. Test IV—ARCHER
	4.5.2. Test IV—ARCHER2

	4.6. TEST V: ARCHER—Simulating up to one million cells
	4.6.1. Test V—ARCHER
	4.6.2. Test V—ARCHER2

	5. Discussion
	5.1. Conclusion
	5.2. Future work

	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

