
Process-Oriented Subsumption
Architectures in Swarm Robotic Systems

Jeremy C. POSSO a, Adam T. SAMPSON b, Jonathan SIMPSON c and Jon TIMMIS d,1

a Department of Computer Science, University of York, UK
b Institute of Arts, Media and Computer Games, University of Abertay Dundee, UK

c School of Computing, University of Kent, Canterbury, UK
d Department of Electronics, University of York, UK

Abstract. Previous work has demonstrated the feasibility of using process-oriented
programming to implement simple subsumption architectures for robot control. How-
ever, the utility and scalability of process-based subsumption architectures for more
complex tasks and those involving multiple robots has not been proven. We report our
experience of applying these techniques to the implementation of a standard foraging
problem in swarm robotics, using occam-π to implement a subsumption control sys-
tem. Through building a system with a realistic level of complexity, we have discov-
ered both advantages and disadvantages to the process-oriented subsumption approach
for larger robot control systems.

Keywords. process-oriented, robotics, subsumption, swarm robotics.

Introduction

In the process-oriented programming model, based on Hoare’s Communicating Sequential
Processes [1], programs are constructed as networks of concurrent processes communicating
with each other over channels. The occam-π [2] language directly supports process-oriented
programming, with processes and channels as first-class features. The process-oriented model
is not limited to occam-π, being available through library extensions to languages such as
Java (JCSP [3]) and Python (PyCSP [4]).

Robot control is inherently a concurrent problem: sensing the environment, reacting to
the environment, and controlling actuators to take action. The concurrent programming fa-
cilities of the process-oriented model have previously been used to implement a number of
common architectures used for robot control [5]. Brooks’ subsumption architecture is one
example: a subsumptive control system is implemented as “a set of small processors which
send messages to each other” [6], which can be expressed directly using process-oriented
techniques.

The use of occam-π as an implementation language for process-oriented robot control
systems is driven by the availability of runtime support for robot platforms and simulation en-
vironments, primarily through the Transterpreter [7]. The Transterpreter is a small, portable
occam-π virtual machine designed for embedded devices, with robotic control systems be-
ing a key application. The Transterpreter runtime system allows concurrent programming at
scales ranging from a few dozen processes on a robot platform like the LEGO Mindstorms
RCX (16MHz Renesas H8300 CPU, 32kB RAM) to thousands of processes on more power-
ful platforms such as the Surveyor SRV-1 (500MHz Analog Devices Blackfin BF537 CPU,
32MB RAM).

1Corresponding Author: Jon Timmis, University of York. E-mail: jtimmis@cs.york.ac.uk.



We are interested in the applicability of the process-oriented subsumptive control model
to swarm robotic systems: those in which many simple robots work together to produce
complex emergent behaviours. For reviews of the work in this area, the reader is referred
to [8,9]. In this paper, we describe our experience with the development of a process-oriented
subsumptive control system.

We review previous work on process-oriented subsumption architectures, which has con-
centrated on simple, isolated devices. We then explore the design of a relatively complex
subsumptive system to solve the foraging problem and make use of the Player/Stage simu-
lation tool [10] in which to preform our experiments. We evaluate this architecture in terms
of its problem-solving effectiveness, and in terms of the flexibility and maintainability of the
resulting control system.

1. Previous Work

The choice of runtime system and implementation language for a robotic control system is
important, since it places constraints on where the control system may execute. The combi-
nation of occam-π and the Transterpreter allows the robot’s hardware to run relatively com-
plex software that can react to external events in flexible ways. Using process-oriented tech-
niques, we can construct reusable concurrent software components that may be predictably
composed to build complex programs. Furthermore, we can design systems involving inter-
actions between multiple control systems – such as between robots within a swarm. The use
of a lightweight runtime allows the use of a high degree of local intelligence on the robot
platform itself, rather than relying on teleoperation and remote operation from a host com-
puter. This untethered approach is an attractive option for swarm robotics, where autonomy
and reliability are key attributes.

Subsumption architectures [6] are what are called reactive architectures that allow for
the decomposition of control (or behaviour) of a robot into smaller, simpler modules. Simp-
son et al. [11] applied an early version of Brooks’ subsumption architecture [6] as a method-
ology for structuring process-oriented robotics programs. This work yielded occam-π im-
plementations of the fundamental subsumptive components, along with rules for their use.
This initial investigation served as a proof of concept for combining the process-oriented and
subsumptive techniques in robotic control.

A follow-up study [5] considered subsumption along with other architectures in a broad
comparison of design principles and components of behavioural control architectures. The
authors identify difficulty in scaling subsumption architectures owing to levels of interdepen-
dency between layers, developed as control systems become more complex. A later revision
to Brooks’ work on subsumptive control revised the principles of the subsumptive model
upon which the process-oriented subsumption work was based; the authors identify these
later changes to subsumption itself as addressing a number of the scaling difficulties.

The work of Simpson et al. primarily identifies design principles and patterns for the
construction of robotic control systems using process-oriented techniques through the exam-
ination of small, straightforward case studies. These techniques and hypotheses have not yet
been tested or verified in larger and more complex real-world tasks, nor have the require-
ments of interaction between multiple robots been considered – areas that the work described
in this paper attempts to address.

2. A Case Study: Foraging

In this section, we will use occam-π and the Transterpreter to develop a process-oriented
subsumptive control system for a standard robotics control problem, in order to identify the



strengths and weaknesses of the method for larger programs. Foraging is a typical task in
swarm robotic systems, acting as a simple platform for the evaluation of systems.

2.1. The Foraging Task

Foraging involves a robot starting from its home base and venturing out into the world to
gather specific attractor objects [12]. Upon finding such an object, the robot picks it up and
returns it to the base. The robot repeats this action until all the attractors in the environment
have been collected, at which point the task is complete. Foraging with multiple robots intro-
duces a dynamic element to the domain and so provides a good test of occam-π’s real-time
communication facilities.

The foraging variant used in this work is garbage collection, where the task requires a
team of several identical robotic agents to find items of rubbish in an environment, pick them
up and deposit them in a single bin.

2.2. Behaviour Architecture

We can identify six high-level behaviours for each robotic agent: explore, avoid collisions,
acquire rubbish, deposit rubbish, recharge and collaborate. Applying the Subsumption model,
each of these high-level behaviours can be decomposed into multiple low-level behaviours
of a lower complexity. These lower-level behaviours describe the basic actions which a robot
is able to perform, and become “layers” in the subsumption architecture. The low-level be-
haviours are as follows:

Wander
The robot wanders the environment at random.

Obstacle Avoid
The robot steers away from physical obstructions in its path, halting when necessary
to avoid a collision. Obstacles are treated as generating a repulsive force that directs
the robot’s steering. There is no need to identify obstacles as discrete objects; a simple
direction and distance to the object provides sufficient information.

Go-to Rubbish
The robot sees pieces of rubbish in the environment and moves towards them.

Pick-up Rubbish
The robot detects when a piece of rubbish is within its grasp and picks it up.

Go-to Bin
The robot sees the bin in the environment and moves towards it when carrying rubbish.

Drop Rubbish
The robot detects when it is at the bin and drops any rubbish it is carrying into the
receptacle.

Go-to Power
The robot sees charging stations in the environment and moves towards one if its bat-
tery level is running low.

Recharge
The robot detects when it is at a power station and docks with it, charging until its
battery is sufficiently replenished.

Separation
The robot discerns other robots that it is too close to and moves away accordingly. This
behaviour brings the level of collaboration within the system to informed coexistence,
as described in [13]. Actively recognising other robots and maintaining a safe distance
is necessary to keep interference from limiting the performance of the team.



Wander

Go-to Bin

Drop Rubbish

Go-to Rubbish

Pick-up Rubbish

Go-to Power

Recharge

Separate

Obstacle Avoid

Gripper

Motors

Gripper
Breakbeam

Vision
System

Sonar

Sensor Data Controller Actuators

Figure 1. Overall subsumption architecture for garbage collection.

2.3. occam-π Sensor/Actuator Interfaces

Figure 1 shows the sensor input to each behaviour and the output to the robot’s actuators.
The robot is equipped with two forward-facing sonar sensors and a forward-facing camera. A
gripper is mounted on the robot’s nose that can both grab and lift items. Two infra-red break
beams between the gripper’s paddles detect when an item is within grasping range.

Occam-Pi
Controller
Program

Occam-Pi
Player 
Library

C++ Proxy
Player 
Library

Player
Server

Channel
communication

FFI
wrappers 

Socket
communication

Figure 2. occam-π interface to Player.

Interaction with the hardware is handled by the Player robotics platform, a network-
based abstraction layer that provides a standard interface to real and simulated robotic control
hardware [10]. Player’s C/C++ API is made available to occam-π programs using a wrapper
generated automatically by the occam-π SWIG module [14]. Since this low-level API is not
designed for concurrent programming, the occam-π player module provides a higher-level
process-oriented interface, where Player devices are exposed as processes that communicate
with the user’s program using appropriate protocols [15]. This module was originally devel-
oped for the RoboDeb robotics software distribution, and includes predefined “brain stem”
processes for several robotics platforms. The resulting architecture is shown in Figure 2.

2.4. Overall Design

Figure 3 shows a process network diagram for the garbage-collecting robotic control system,
with dotted lines dividing the layers of the subsumption architecture. Processes are isolated as
usual in a process-oriented system; they do not interact except through the channels shown.



brain.stem

prevent.collision

object.at.left

object.at.right

obstacle.
avoidance motors

roll.forward S S

random.rotation wander S

detect.bin
S

S

check.at.bin drop.
rubbish S

S

S

detect.rubbish goto.
rubbish S

I
S

check.at.rubbish pickup.
rubbishI

goto.bin

has.rubbish

detect.power
S

Sgoto.
power

check.at.power rechargeI

I

power.monitor

detect.robot separate

blobfinder.
cleaner

gripper.
reader

Obstacle Avoid

Wander

Go-to Bin

Drop Rubbish

Go-to Rubbish

Pick-up Rubbish

Recharge

Go-to Power

Separate

SH
AR

ED
 S

O
NA

R
so

na
r.d

at
a

BL
O

BF
IN

DE
R

ca
m

.d
at

a

G
RIPPER.DATA
gripper.stateBO

O
L

gr
ip

er
.s

ta
te

.
re

qu
es

t

MOTORS motor.control

GRIPPER gripper.control

INT battery.level

BOOL power.request

BO
O

L recharge

Figure 3. Process diagram for the subsumptive garbage collection controller.

A subsumption architecture works by inhibiting and suppressing control signals. In-
hibitor (“I” in Figure 3) and suppressor (“S”) components usually pass signals received on
their input channel to their output channel, but differ in how they react to signals on their
control channel. An inhibitor discards input signals when it receives a signal on its control
channel, causing the output of upstream components to be lost. A suppressor instead replaces
its input signals with those received on its control channel.

In Figure 3, the layers are shown in order of priority: the behaviours of the lower layers
will be overridden by those of higher layers in turn in reaction to sensor inputs. We will now
consider the design of the individual layers.

2.4.1. Obstacle Avoid and Wander

Figure 4 shows the process network for this behaviour. The random.rotation process produces
a random rotation velocity at arbitrary intervals, output for a randomly generated duration. If



prevent.collision

object.at.left

object.at.right

obstacle.
avoidance

roll.forward S S

random.rotation wander S

Obstacle Avoid

Wander

INT motor.speed

INT motor.rotation

INT halt.motor.speed

INT right.motor.rotation

BOOL left.sonar.halt
INT left.motor.rotation

BOOL right.sonar.halt

INT forward.motor.speed

INT
random.val

INT
wander.rotation

SHARED
SONAR

sonar.data

INT goto.bin.speed.s.out INT goto.bin.rotation.s.out

Figure 4. Process network for obstacle avoidance.

wander receives input from the random.val channel the process forwards the rotation speed,
otherwise it outputs a rotation of zero. The wander.rotation output channel is suppressed by
the rotation speed from the go-to bin layer and, via a transitive path through the suppressor
chain, rotations from all behaviours that output motor commands.

The obstacle.avoidance process reads in both repulsive rotations as well as the output
from the wander.rotation suppressor. An overall direction for the robot is calculated by com-
bining the avoidance rotations with the rotation generated by higher behaviours (hereafter re-
ferred to as the behavioural rotation). The two avoid rotations are summed to produce a joint
vector, allowing the robot to steer directly forwards when it detects obstacles on both sides –
such as when travelling down a corridor. The repulsive vector is then compared with the be-
havioural rotation; if the two are in the same direction and the behavioural rotation is greater
than the evasive rotation then the behavioural rotation is routed to the output. Otherwise, the
avoid vector is routed to the output.

Summing the repulsive rotations does not produce the correct vector if moving towards
a head-on collision. Objects directly in front of the robot cause the left and right range-
finders to return diametrically opposing repulsions which sum to zero and produce a null
turning vector. To counter this, the object detection processes transmit a Boolean halt mes-
sage to obstacle.avoidance if an obstacle is sensed within a given “danger” range (defined
as 0.5m). If either of these signals is received, obstacle.avoidance routes only the rotation
from the corresponding object detection process to the output. If a signal is received on
both left.sonar.halt and right.sonar.halt the right rotation is given arbitrary preference.
This ensures that the robot turns away sharply from obstacles within a dangerous proxim-
ity, pivoting right in the face of a head-on collision. The robot is moved forwards by the
roll.forward process, which outputs a constant motor speed on the forward.motor.speed

channel. This channel is suppressed by two other outputs. The first suppressor takes input
from the Go-to Bin motor speed output, providing a suppression path for motor speed outputs
from all other behaviours in the system. Output from this suppressor is further suppressed by
prevent.collision before being sent to the motors. The prevent.collision process monitors
both sonar sensors, and outputs a motor speed of zero if either reports an obstacle within the
defined danger range, halting the robot.

2.4.2. Go-To Bin and Drop Rubbish

Figure 5 shows the process network for this behaviour. The detect.bin process constantly
examines data from the camera, searching for the bin. If a matching object is found, the pro-
cess outputs its heading and range. Upon receipt of a heading, the goto.bin process outputs
motor commands that suppress those of the wander and obstacle avoidance layers to move
the robot towards the location described. The check.at.bin process monitors the camera to
determine when the bin is close enough to deposit rubbish. This event is communicated to



check.at.bin drop.
rubbish S

S

S

FRESH.BLOBS
drop.rubbish.blobs

BOOL
at.bin

INT drop.rubbish.motor.speed 

INT drop.rubbish.motor.rotation 

GRIPPER drop.gripper.control

GRIPPER
gripper.control

INT
goto.rubbish.

speed.s.out

INT
goto.rubbish.
rotation.s.out

GRIPPER
pickup.gripper.
control

detect.bin
S

S
goto.bin

HEADING
bin.heading 

INT goto.bin.motor.speed 

INT goto.bin.motor.rotation

FRESH.BLOBS
goto.bin.blobs

INT goto.bin.speed.s.out INT goto.bin.rotation.s.out

Go-to Bin

Drop Rubbish

BOOL
gripper.empty

Figure 5. Process network for seeking bin and dropping rubbish.

the drop.rubbish process which in turn sends a command to the gripper to open its paddles.
The process also outputs a message to the has.rubbish process in the Pick-up Rubbish layer
to indicate that the gripper is free. This communication is made to a higher priority layer and
is necessary to coordinate the acquire/deposit rubbish behavioural sequence.

2.4.3. Go-to Rubbish and Pick-up Rubbish

detect.rubbish
S

I
S

pickup.
rubbishI

has.rubbish

Go-to
Rubbish

Pick-up
Rubbish

GRIPPER pickup.gripper.control

INT goto.rubbish.speed.s.out

INT goto.rubbish.rotation.s.out

goto.
rubbish

INT goto.rubbish.motor.speed 

INT goto.rubbish.motor.rotation

INT goto.power.speed.s.out
INT goto.power.rotation.s.out

BOOL
gripper.empty

BOOL gripper.full

BOOL
at.rubbish

HEADING
rubbish.heading

check.at.rubbish

GRIPPER.DATA rubbish.gripper.state
BOOL rubbish.request.gripper.state

FRESH.BLOBS
goto.rubbish.

blobs

GRIPPER.DATA pickup.gripper.state

BOOL pickup.request.gripper.state

Figure 6. Process network for finding rubbish.

The Go-to Rubbish behaviour operates in much the same way as Go-to Bin, steering the
robot towards rubbish rather than the bin; see Figure 6. When multiple items of rubbish are
detected, the robot moves towards the nearest item. The goto.rubbish process manoeuvres
the robot into a position where it is able to pick up rubbish, halting the robot directly in
front of an item. The check.at.rubbish process constantly monitors break-beams between the
paddles. If anything cuts these beams a message is sent to the pickup.rubbish process which
then outputs a gripper command to close the paddles, suppressing the gripper output of the
drop rubbish behaviour.

After the command has been sent, pickup.rubbish checks the state of the gripper. If
the gripper’s paddles are closed and the break-beams are broken, a confirmation message is
sent on the gripper.full channel. Otherwise, a command is sent to the gripper to force the
paddles open. As a result, if the robot fails to pick up the rubbish, its gripper will open again
and the behaviours will loop until a successful collection is made or, if the rubbish is in an
unobtainable position, the robot overshoots.

Once the robot has successfully picked up an item of rubbish, the has.rubbish process
receives a message from pickup.rubbish and outputs parallel signals to inhibit the output lines



of detect.rubbish and check.at.rubbish. This prevents the Pick-Up Rubbish behaviour from
taking control of the actuators, and so the robot will not move to pick up any more rubbish.
The resultant effect is for the Drop Rubbish behaviour to have priority until the rubbish is
dropped in the bin, at which point has.rubbish stops inhibiting and the rubbish-collection
behaviours regain priority.

2.4.4. Go-to Power and Recharge

detect.power
S

Sgoto.
power

check.at.power rechargeI

I
Go-to Power

INT battery.level

BOOL power.request

Recharge

INT goto.power.speed.s.out

INT goto.power.rotation.s.out

INT goto.power.speed

INT goto.power.rotation

power.monitor

FRESH.BLOBS
recharge.blobs

FRESH.BLOBS
goto.power.blobs

BOOL at.power

HEADING
power.heading

BOOL recharge

INT separation.speed
INT separation.rotation

Figure 7. Process network for power recharge.

Figure 7 shows the process network for this behaviour. In general, the power.monitor

process inhibits the recharging behaviours and so the robot will ignore any charging stations.
The power.monitor process regularly examines the robot’s battery level and stops inhibiting
once the remaining power drops below a defined threshold. At this point, recharging becomes
the priority for the robot and it will move to detected charging stations over any other attractor.
Lower behaviours are still allowed to function while a charging station is being sought: if
the robot comes across an item of rubbish and cannot see a charging station, it will move to
collect the rubbish.

The detect.power process monitors the camera to identify charging stations, passing
headings to goto.power to steer the robot. When the robot is docked at a charging station, the
recharge module forces the robot to remain stationary until it has recharged. Once the battery
level is replenished, power.monitor resumes its output of inhibiting messages and the robot is
free to continue foraging.

2.4.5. Separation

detect.robot separate

INT separation.speed INT separation.rotation

FRESH.BLOBS
separation.blobs

HEADING robot.heading

Figure 8. Process network for separation.

Figure 8 shows the process network for this behaviour. The Separation behaviour pre-
vents head-on collisions with other agents by monitoring a 20◦ cone in the centre of the
robot’s field of vision. The detect.robot process examines the camera data for blue objects
(robots) and passes the heading of the nearest detected robot to separate.



3. Performance Evaluation

We performed an experimental analysis of the system’s completion of a set foraging task in
order to quantitatively measure the performance of the controller.

3.1. The Simulated Environment

The control system was tested using the Stage simulation environment, which provides vir-
tual robotic devices that can be controlled using Player. The RoboDeb software distribution
provides a preconfigured occam-π, Player and Stage system that can be used inside a vir-
tual machine. Simulation makes experimentation more convenient, and allows us to maintain
precisely identical, controlled start conditions for multiple experiments. The use of Player
also means that we could potentially use the control program unmodified on a real robotics
platform.

Each simulated robot has a top-mounted PTZ camera with an 80◦ field-of-vision and a
range of eight metres. To make it possible for Stage’s simulated vision system to distinguish
between objects in the environment, different types of objects are given different colours.
Black objects are used to represent walls and fixed obstacles; they are not detected by the
vision system, but can be detected by the robot’s sonar sensors. The robot has two sensors,
each of which faces 35◦ away from the forward normal of the robot and covers a 35◦ slice to
a range of five metres.

The environment used was enclosed by an irregular boundary, 25m by 20m at its longest
and widest points; the area of the search region was approximately 396m2. This region in-
cludes non-uniform surfaces and a variety of obstructions. The task involved four robots, six-
teen pieces of rubbish, a bin in the centre of the world and three arbitrarily positioned charg-
ing stations. Rubbish locations were picked using a random number generator with a uniform
distribution.

The non-deterministic behaviour of the controller means that the robot’s behaviour is
not completely reproducible even given identical environmental conditions; it is necessary to
average the results of multiple trials. The experiment was performed twenty times and spatial
and temporal data was recorded for each trial. The completion criterion was defined as the
successful deposition of all sixteen pieces of rubbish in the bin. Each experiment was subject
to termination constraints, with a trial being halted if either:

• the trial took longer than twenty minutes to complete; or
• all four robots failed, either by unrecoverable collisions or behaviour stall.

3.2. Evaluation Metrics

The performance of our control system can be quantified in several ways. Full completion
of the foraging task is defined as collecting all items of rubbish from the environment and
successfully depositing them in the bin. Although largely qualitative, task completion pro-
vides a reasonable metric as to whether the implemented behaviours and coordination of the
controller are effective.

Given the previously documented use of occam-π subsumption architectures [11,16],
it can be reasonably expected that the implementation of a subsumptive foraging controller
is possible. The proposed system coordinates many more behaviours than has previously
been attempted with a process-oriented approach. The general level of complexity has been
shown to be feasible in the subsumption architecture itself by the Herbert robot [17], albeit
with some reliability problems. The following results detail the state of the system after the
termination of each experiment, including both successful completions and halted trials.



4. Results

Figure 9 shows the average amount of rubbish collected and successfully returned to the bin,
showing the mean number of items deposited and interquartile range. The mean success was
fourteen returned items (rounded to the nearest integer). In five of the trials all of the rubbish
was successfully deposited. The worst observed performance of ten returned items occurred
once. In general, failure to return all of the items was due to collisions or behavioural stall, an
intermittent fault that caused a robot to cease foraging. Agents affected by behavioural stall
would continue to wander around the environment and avoid obstacles but would make no
effort to pick up or deposit rubbish. We believe that this is caused by deadlock in part of the
control network; this is discussed further below.

10 11 12 13 14 15 16
Rubbish Deposited

Figure 9. Box plot showing the amount of rubbish deposited in bin.

The controller itself is entirely capable of completing the task, as demonstrated by the
observed “perfect” runs, but due to the discussed reliability issues complete success was not
the usual case. In the majority of trials all of the rubbish in the environment was collected by
the robots, but was not all deposited in the bin due to faults. Only four out of the twenty trials
had uncollected rubbish in the environment at the point of termination.

The observed successful completion of the task provides evidence to support Hypothesis
1. It has been demonstrated that the developed controller is capable of collecting all items of
rubbish in the experimental environment.

4.1. Reliability

During testing of the system we noticed some interesting behaviour. An intermittent fault
emerged that affected the reliability of the system as a whole in terms of allowing the robots
to complete their task. After a period of successful operation, usually after several collections
and depositions of rubbish, the robot ceased to pick up rubbish or, if carrying an item, failed
to drop it in the bin. The agent continued to function, wandering about the world and avoid-
ing obstacles, but was unable to detect rubbish, the bin, charging stations or other robots. As
both the wander and obstacle avoidance behaviours were unaffected by the presence of the
fault it can be inferred that the failure occurs in one of the layers that makes reads from the
camera. A likely cause for the problem is that one of the processes in the acquire rubbish,
deposit rubbish, recharge or separate competencies locks; possibly due to an incomplete ren-
dezvous. Such a failure will prevent a layer from reading input from the blobfinder.cleaner



process, blocking the process and preventing the transmission of camera data to all other
dependent behaviours. We call this fault a behavioural stall, with affected robots known as
stalled agents. The frequency of behavioural stall increased as more layers were added and
so its presence was only discovered during extensive testing of the complete system. Retroac-
tively stripping away behaviours made the failure progressively more uncommon; although
it has not been observed without the recharging and separation layers a competency level at
which behavioural stall conclusively does not occur cannot be established. Consequently, the
fault could not be isolated to a single behaviour. It is possible that the error lies with the Ro-
boDeb environment or experimentation programs, but this could similarly not be established.
Due to behavioural stall the developed controller is somewhat unreliable. This is not uncom-
mon with pure implementations of the subsumption architecture at this scale, as evidenced
by the performance of similar controllers such as the Herbert robot [17]. Scaling issues with
the subsumption architecture make it increasingly difficult to debug the behavioural network
as its complexity increases. As the fault cannot be definitively isolated it is difficult to suggest
possible solutions [18].) postulated a capability ceiling for the subsumption architecture as
the level of complexity implemented by Herbert. The developed controller performs a very
similar overall action and coordinates additional behaviours. Subsequently, the encountered
reliability problems are potentially inherent to the subsumption architecture. Although only
evaluated in simulation, the system has been shown to make several full completions of the
foraging task.

4.2. Performance

Performance was measured as the average distance travelled by each robot and the time taken
until the termination of the task. The results are somewhat distorted by agent failure; for ex-
ample, the average completion time is biased by unsuccessful trials which were terminated
at twenty minutes. To accommodate this, two sets of results are discussed: the average data
for all trials, and the average data for the five trials which were fully completed. The average
distance travelled by each robot is given in Table 1. As shown, the overall distance travelled
was less during trials in which all of the rubbish was successfully returned. During these tri-
als, agent failure was either minimal or non-existent, and so the work could be split evenly
across many robots. If multiple agents failed, the remaining robots needed to cover more
ground to collect the rubbish. There is a notable difference in the average distances travelled
by each robot. This is likely a result of the interference caused by robot failures during mea-
surement, as the distances have lower variation in the successful set. The average time taken
until termination of the task is given in Table 2. Successful completion took an average of
approximately ten minutes. As with distance travelled, the completion time averaged over all
trials is longer than for successful tasks due to an increased proportion of agent failure.

Table 1. Average distance travelled by each robot (measured in meters).

Trials R1 R2 R3 R4 Total
All 477.0 505.0 417.9 502.3 1872.2

Successful 405.2 421.4 368.2 400.0 1594.8

Table 2. Average time taken across all robots.

Trials Time (seconds)
All 939.0

Successful 656.6



5. Reflection

We successfully implemented a standard real-world problem using a process-oriented sub-
sumption architecture, and demonstrated its ability to successfully complete the evaluation
task.

We found that the process-oriented programming model provides a solid foundation for
the implementation of the interacting layers of a subsumption architecture. The implemen-
tation requirements of a subsumption architecture translate straightforwardly into networks
of concurrent processes, yielding a relatively simple progression between design and im-
plementation. The inherent modularity and composition of a process-oriented system, when
combined with the design principles of subsumption, means that many of the components
developed for this work could be reused in other subsumptive control systems. The use of
composition to add and remove features of the control system was found to work effectively,
even in more complex programs.

A fundamental difference between the two approaches in communication between com-
ponents causes problems in systems of this size. Process-oriented design techniques, and the
occam-π language in particular, focus on synchronous communication, where failure to re-
ceive a message from a process will prevent that process from executing any further. Sub-
sumptive architectures assume asynchronous messaging: if a signal is not received, it is sim-
ply discarded without blocking the sender. Implementing subsumptive components in occam-
π requires considerable effort to prevent unwanted blocking while minimising the number
of synchronisations required. Process-oriented programmers usually rely on design patterns
such as I/O-PAR or Client-Server to achieve safe communications [19], but few patterns have
yet been identified for asynchronous programming within the process-oriented model. This
is clearly an area for future work, since many process-oriented environments now provide
facilities for asynchronous messaging. We need design patterns that let us construct safe sub-
sumptive networks with minimal synchronisation overhead in the same way we presently
construct Client-Server networks.

Debugging the system presented a number of significant problems. Besides behavioural
stall – which we believe is caused by deadlock in part of the control system – the current
version of the controller sometimes collides with objects or deposits rubbish just outside of
the bin. It is difficult to tell whether these are deficiencies in the design of the subsumption ar-
chitecture or faults in the implementation. Tracing the behaviour of individual processes with
the Transterpreter is possible, if awkward (especially on embedded devices) – but these kinds
of problems result from the complex interactions between processes, and we currently have
no way of visualising and exploring these interactions. It seems likely that these behavioural
problems are caused by the delay between sensor input being read and actuator output being
applied, but we cannot easily measure this effect at the moment.

6. Conclusions

We have described our experience with the application of process-oriented programming and
subsumptive robotic control to a relatively complex swarm robotics task. Motivated by the
attraction of concurrency for implementing a system using an architecture which is naturally
concurrent, we designed, implemented and tested a subsumptive control system for a stan-
dard robotics problem. This has been a qualified success. Design and implementation iden-
tified significant advantages of the modular and compositional concurrent style permitted by
the process-oriented approach. The use of Player as an abstraction layer means that we can
conduct experiments both in simulation and using real robots (“embodied simulation”) – or
using a mix of the two.



Our implementation is capable of acceptable runtime performance – but suffers from
hard-to-debug problems under specific conditions. We feel these problems result from defi-
ciencies in the design approaches and tools currently used by process-oriented programmers,
especially when applied to asynchronous and more complex systems. We believe that these
problems were not identified in previous work involving the combination of process-oriented
and subsumptive approaches due to the simplicity of previous case studies.

If these problems can be addressed, by the development of new design patterns and more
effective debugging tools, we believe that process-oriented subsumptive techniques present
considerable potential for application in swarm robotics. We would like to be able to con-
struct subsumptive control systems that span multiple control systems – for example, having
one robot be able to suppress behaviours within another robot, or make decisions based on
a repository of information within the environment – without the need for a centralised con-
trol system. The process-oriented approach allows reasoning about communication between
distributed systems with the same semantics as local communication, meaning that design
patterns developed for single robots can be applied across swarms.

Acknowledgements

This work is part of the CoSMoS project, funded by EPSRC grants EP/E053505/1 and
EP/E049419/1.

References

[1] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1985.

[2] Peter H. Welch and Frederick R.M. Barnes. Communicating Mobile Processes: Introducing occam-π. In
A.E. Abdallah, C.B. Jones, and J.W. Sanders, editors, 25 Years of CSP, volume 3525 of Lecture Notes in
Computer Science, pages 175–210. Springer Verlag, April 2005.

[3] Peter H. Welch. Process Oriented Design for Java: Concurrency for All. In P.M.A. Sloot, C.J.K. Tan, J.J.
Dongarra, and A.G. Hoekstra, editors, Computational Science - ICCS 2002, volume 2330 of Lecture Notes
in Computer Science, pages 687–687. Springer-Verlag, April 2002.

[4] Brian Vinter, John Markus Bjørndalen, and Rune Møllegaard Friborg. PyCSP Revisited. In Welch et al.
[20], pages 263–276.

[5] Jonathan Simpson and Carl G. Ritson. Toward Process Architectures for Behavioural Robotics. In Welch
et al. [20], pages 375–386.

[6] Rodney A. Brooks. A robust layered control system for a mobile robot. Technical report, MIT, Cambridge,
MA, USA, 1985.

[7] Christian L. Jacobsen. A Portable Runtime for Concurrency Research and Application. PhD thesis,
University of Kent, Canterbury, Kent, England, December 2006.

[8] M. Dorigo and E. Sahin. Special issue on swarm robotics. Autonomous Robots, 17, 2004.
[9] E. Sahin and A. Winfield. Special issue on swarm robotics. Swarm Intelligence, 2((2-4)), 2008.

[10] Brian Gerkey, Richard T. Vaughan, and Andrew Howard. The Player/Stage Project: Tools for Multi-
Robot and Distributed Sensor Systems. In Proceedings of the 11th International Conference on Advanced
Robotics (ICAR 2003), pages 317–323, Coimbra, Portugal, June 2003.

[11] Jonathan Simpson, Christian L. Jacobsen, and Matthew C. Jadud. Mobile robot control: The Subsumption
Architecture and occam-π. In Frederick R. M. Barnes, Jon M. Kerridge, and Peter H. Welch, editors,
Communicating Process Architectures 2006, volume 64 of Concurrent Systems Engineering, pages 225–
236, Amsterdam, The Netherlands, 2006. WoTUG, IOS Press.

[12] A. Winfield. Foraging Robots. Springer, 2009.
[13] M. Mataric. Designing emergent behaviors: From local interactions to collective intelligence. In Pro-

ceedings of the International Conference on Simulation of Adaptive Behavior: From Animals to Animats,
volume 2, pages 432–441, 1992.

[14] Damian J. Dimmich and Christan L. Jacobsen. A Foreign Function Interface Generator for occam-π. In
Jan F. Broenink, Herman W. Roebbers, Johan P.E. Sunter, Peter H. Welch, and David C. Wood, editors,



Communicating Process Architectures 2005, volume 63 of Concurrent Systems Engineering, pages 235–
248, Amsterdam, The Netherlands, 2005. WoTUG, IOS Press.

[15] Christian L. Jacobsen and Matthew C. Jadud. Concurrency, robotics and robodeb. In AAAI Spring Sym-
posium on Robots and Robot Venues: Resources for AI Education, Stanford, Palo Alto, CA, 2007. Asso-
ciation for the Advancement of Artificial Intelligence.

[16] J Neeson. Occam-Pi for Multiple Robotic Systems. Master’s thesis, University of York, 2008.
[17] Jonathan H. Connell. A colony architecture for an artificial creature. Technical report, Cambridge, MA,

USA, 1989.
[18] E. Gat. Three-layer architectures. In R. Kortenkamp, R.P. Bonasso, and R. Murphy, editors, Artificial

Intelligence and Mobile Robots: Case Studies of Successful Robot Systems, pages 340–366. AIII/MIT
Press, 1998.

[19] Adam T. Sampson. Process-Oriented Patterns for Concurrent Software Engineering. PhD thesis, Univer-
sity of Kent, October 2010.

[20] Peter H. Welch, Herman W. Roebbers, Jan F. Broenink, Frederick R.M. Barnes, Carl G. Ritson, Adam T.
Sampson, Gardiner S. Stiles, and Brian Vinter, editors. Communicating Process Architectures 2009, vol-
ume 67 of Concurrent Systems Engineering, Amsterdam, The Netherlands, 2009. WoTUG, IOS Press.


