
Concurrent Event-driven Programming
in occam-π for the Arduino

Christian L. JACOBSEN a, Matthew C. JADUD b,
Omer KILIC c and Adam T. SAMPSON d

a Department of Computer Science, University of Copenhagen, Denmark
b Department of Computer Science , Allegheny College, PA, USA
c School of Engineering and Digital Arts, University of Kent, UK

d Institute of Arts, Media and Computer Games, University of Abertay Dundee, UK
{christian , matt , omer , adam} @concurrency.cc

Abstract. The success of the Arduino platform has made embedded programming
widely accessible. The Arduino has seen many uses, for example in rapid prototyp-
ing, hobby projects, and in art installations. Arduino users are often not experienced
embedded programmers however, and writing correct software for embedded devices
can be challenging. This is especially true if the software needs to use interrupts in
order to interface with attached devices. Insight and careful discipline are required to
avoid introducing race hazards when using interrupt routines. Instead of programming
the Arduino in C or C++ as is the custom, we propose using occam-π as a language as
that can help the user manage the concurrency introduced when using interrupts and
help in the creation of modular, well-designed programs. This paper will introduce the
Arduino, the software that enables us to run occam-π on it, and a case study of an
environmental sensor used in an Environmental Science course.

Keywords. Transterpreter, occam-pi, Arduino, embedded systems, interrupts, sensing.

Introduction

It is easy to run into basic issues regarding concurrency when programming embedded hard-
ware, and often the use of interrupts is required to handle internal and external events. In-
terrupts introduce concurrency; concurrency, when coupled with shared state, easily intro-
duces race hazards. When coupled with the non-deterministic nature of interrupt-driven sys-
tems, race hazards can be challenging for experienced programmers to diagnose, and rapidly
become very difficult for novice programmers to fix.

Traditionally, the novice embedded systems developer would be a student of engineer-
ing or computing: an individual committed to learning the how and why of their problems.
The Arduino, a low-cost (less than $30), open hardware platform used by more than 150,000
artists and makers for exploring interactive art, e-textiles, and robotics. It’s release has rad-
ically changed the (traditional) demographics of the embedded systems world, and despite
the (likely) non-technical background of users attracted to the Arduino, it presents them with
the same challenge as the budding electrical engineer: how do you make a single processor
do two or more things at the same time?

In the past two years, we have focused our development efforts on bringing occam-π
to the Arduino platform. occam-π’s use of processes and channels (from Hoare’s CSP [1])
provide powerful abstractions for expressing parallel notions (“blink an LED while turning
a motor”) as well as managing random events in the world (“wait for pin 7 to go high while
doing something else”). In addition, processes are an encapsulated abstraction for hardware,

and channels provide well-defined interfaces that allow for the design of systems that (1)
mirror the structure of the hardware they control and (2) allow for easy substitution when,
for example, an EEPROM module is replaced with an SD card or some other form of data
storage.

Our work demonstrates the feasibility of running a virtual machine on an embedded plat-
form with as little as 32KB of space for code and 2KB of RAM, while performing sufficiently
well to allow for the development of interesting software and hardware. While there have
been other runtime and language efforts targeting devices this size (for example, TinyOS [2],
Mantis [3], Contiki [4]), these projects typically target very small research communities. Our
goal in porting to the Arduino is to support the diverse and growing community of makers
exploring embedded systems by helping them use occam-π to manage the concurrency inher-
ent in their hardware/software systems. Using our tools we have explored several interesting
problems that required careful handling of interrupts and real time concerns, including an
environmental sensor for monitoring energy and room usage on a college campus (as demon-
strated in this paper) and the real time control of an unmanned aerial vehicle, as demonstrated
in [5].

1. The Arduino

The Arduino is described as “an open-source electronics prototyping platform based on flex-
ible, easy-to-use hardware and software. It’s intended for artists, designers, hobbyists, and
anyone interested in creating interactive objects or environments.” [6] In this regard, the Ar-
duino is not just a piece of hardware, but rather an ecosystem consisting of hardware, soft-
ware, documentation, and above all, its community. The concurrency.cc board, which we
discuss in Section 1.3, is our own derivative of the Arduino’s open hardware design. In total,
it is estimated that at the time of writing, over 150,000 Arduino (or Arduino compatible)
devices have been shipped to users worldwide.

The software officially supported for programming the Arduino is a custom integrated
development environment (IDE) based on the Processing IDE [7], and a set of libraries based
on Wiring [8]. Both of these projects are “sister projects” to the Arduino project. The min-
imalistic Arduino IDE provides support for editing, syntax highlighting, compilation, and
uploading of code to a device. Programming is done in C++ and the Wiring libraries pro-
vide functions for interacting with the Arduino and a wide variety of sensors, motors, and an
endless variety of storage and communication devices.

1.1. The Arduino Community

The Arduino’s single greatest asset at this point is not the choice of microcontroller but the
community itself. It’s large number of enthusiastic developers, users, and merchants make it
easy to get started with the Arduino.

The Arduino project’s core development team is quite small, and while there is little
contribution to the core from the global community, there is a large “external” community
developing libraries and examples for the platform. While this code does not typically make
it into the distribution, it finds its way onto many websites and into repositories all over
the world. Both code and circuitry examples can be found to support users in exploring the
control of LCD displays, data storage peripherals, and sensors and motors of all sorts.

The user community helps perpetuate the popularity of the platform. Enthusiastic users
“tweet” about their creations (or make creations that tweet), write blog posts, or even generate
videos of their creations for sharing on sites like YouTube and Vimeo. These enthusiasts—
often artists, makers, and hobbyists with no formal background in computing or electronics—

are keen to help other newcomers to the community, recommending resources and solutions
when a new explorer gets stuck.

1.2. occam-π and the concurrency.cc Community

Although occam is an old language, it has a tiny user community; hence why we have chosen
a large and vibrant community of makers and learners in our most recent porting efforts.
To grow in this community, we have taken a number of steps—but it will take time and
persistence to see the value of these efforts. First, we chose a URL for our project that we
hoped would be representative and memorable: concurrency.cc. The .cc country code
was chosen to match that used by the Arduino project (arduino.cc) as well as reflect a
commitment to open hardware and software (a la the Creative Commons1). Mailing lists,
open repositories, and easy-to-use bug trackers are not adequate to attract new end-users: we
needed to automate the building of packages containing an IDE and toolchain that could be
easily installed on all major operating systems.

However, we know the occam-π project, and our efforts to grow our community of users
on the Arduino, are hampered by numerous issues. Poor documentation remains our worst
enemy: there are few resources for the occam-π programming language available online, and
our own documentation efforts are slowed by a lack of contributors. Until it is easy for people
to download tools, read (or watch) examples, and implement those examples successfully on
their own—and have resources available to let them continue exploring—we expect that it
will be difficult to significantly grow the occam-π user community. (We look at resources like
the “How to tell if a FLOSS project is doomed to FAIL”[9] and Bacon’s “The Art of Commu-
nity: Building the New Age of Participation”[10] as guides down the long and challenging
road to attracting and retaining users in an open, participatory framework.)

1.3. Arduino Hardware and the concurrency.cc Board

The most popular Arduino boards, the Uno and Mega, are both based on the megaAVR
series of processors by Atmel2. The specifications for the Uno and Mega can be seen in
Table 1 along with those for the LilyPad Arduino, an official 3rd party Arduino variant, and
the concurrency.cc board, which is Arduino compatible. The megaAVR processors used on
these boards are typical embedded microcontrollers with a modest amount of flash and RAM.
They all have general purpose (digital) input-output capability, as well as 10-bit analog-to-
digital (ADC) conversion hardware, pulse-width modulation hardware (PWM), and support
a variety of common embedded protocols (UART, SPI, TWI).

Table 1. Common Arduino configurations

Board MCU Flash SRAM MHz UART ADC PWM GPIO
Uno ATmega328 32 KB 2 KB 16 1 6 6 14
Mega ATmega2560 256 KB 8 KB 16 4 16 14 54
LilyPad ATmega328 32 KB 2 KB 8 1 6 6 14
c.cc ATmega328 32 KB 2 KB 16 1 6 6 14

The standard Arduino board (the Arduino Uno) has three status LEDs (power, serial
transmit and receive) as well as one LED that can be controlled via one of the processors
pins. This LED can be used when initially working with the board in order to ensure that
everything is working correctly: write a program to continuously blink the LED, compile

1http://creativecommons.org/
2Atmel’s megaAVR product line: http://www.atmel.com/dyn/products/devices.asp?category_

id=163&family_id=607&subfamily_id=760

concurrency.cc
.cc
arduino.cc
http://creativecommons.org/
http://www.atmel.com/dyn/products/devices.asp?category_id=163&family_id=607&subfamily_id=760
http://www.atmel.com/dyn/products/devices.asp?category_id=163&family_id=607&subfamily_id=760

and upload it. Success is evident. When using the Arduino environment blinking this LED is
sufficient as a getting started exercise, but when using a concurrent language we would like
to be able to easily illustrate the concurrent nature of our programs. To do this, we often blink
several LEDs in parallel, a feat that cannot be accomplished without attaching further LEDs
to the standard Arduino board.

For this reason, demonstrating concurrency on a standard Arduino in a classroom or
workshop environment involves connecting several devices (eg. LEDs) to the board using
jumper wires that easily fall out during experimentation and use. To remedy this, we have
developed an Arduino variant that we call the the concurrency.cc board (Figure 1), or “c.cc
board” for short. The c.cc board is an Arduino derivative developed by the third author that
incorporates a number of features a standard Arduino does not.

Figure 1. The concurrency.cc board.

First, the c.cc board incorporates a boost converter circuit that allows it to run off low-
voltage sources like single AA batteries. Second, it uses a JST connector (as opposed to a
larger barrel jack), meaning high energy density lithium polymer batteries can be plugged
directly into the board. Third, a mini-USB plug is used, which is now common on many small
electronic devices. Finally, four LEDs are designed directly into the board, allowing basic
demonstrations of concurrency without the need for an external circuit. These features permit
the use of readily available power sources (AA batteries) in teaching environments with an
integrated “display” of four LEDs that students can use to see multiple outputs in parallel
without needing to construct a separate, error-prone circuit.

1.3.1. Blinking Four LEDs

A first project on any embedded platform is to blink an LED, which demonstrates that code
has been uploaded to the processor and that one or more registers that affect the external state
can be manipulated. When programming with a concurrent programming language, blinking
four LEDs independently should be no harder than blinking one. To blink one LED, we might
write the program in Listing 1.

1 #INCLUDE "plumbing.module"
2
3 PROC main ()
4 blink (13, 500)
5 :

Listing 1. Blinking the built-in LED on and off at a rate of 500ms.

To blink four LEDs at different rates, we would use a PAR and four instances of the
blink() procedure with different output pins and toggle rates (Listing 2).

1 #INCLUDE "plumbing.module"
2
3 PROC main ()
4 PAR
5 blink (13, 500)
6 blink (12, 400)
7 blink (11, 300)
8 blink (10, 200)
9 :

Listing 2. Blinking four LEDs in parallel at different rates.

For comparison, we have included a C++ program that blinks four LEDs at different
rates (Listing 3). It follows the pattern of all programs written in the Arduino environment,
which involves implementing both a setup() and a loop() separately. The former is run
once, the latter is run repeatedly until power is removed.

1 boolean state[4] = {false, false, false, false};
2 unsigned long prev = 0;
3
4 void setup () {
5 for (int i = 0; i < 4; i++)
6 pinMode(10+i, OUTPUT);
7 }
8
9 void toggle (int pin) {

10 state[pin − 10] = !state[pin − 10];
11 digitalWrite(pin, state[pin − 10]);
12 }
13
14 void loop () {
15 unsigned long time = millis();
16 if (time != prev) {
17 if ((time % 500) == 0) { toggle(13); }
18 if ((time % 400) == 0) { toggle(12); }
19 if ((time % 300) == 0) { toggle(11); }
20 if ((time % 200) == 0) { toggle(10); }
21 prev = time;
22 }

Listing 3. Blinking four LEDs at different rates in C++.

Even though the problem is “simple,” the second author still made several errors in writ-
ing this code. The first mistake was made in implementing toggle(). To index into the array
state (which holds the current state of the four Arduino pins), the value 13 was subtracted to
obtain an index instead of 10; this code executed and produced very odd behavior, whereas an
equivalent occam-π program would have crashed at runtime. To debug this, a print statement
was added to toggle() that output the values in the state array. Once this was fixed, the
serial printing was removed—at which point, the program ceased to function correctly. The
reason was that the loop() procedure was running too quickly, and as a result multiple read-
ings (and therefore multiple pin toggles) were taking place in sub-millisecond timeframes.
As a fix, the conditional on line 16 was added.

While we believe there is much more work to be done to support occam-π on the Ar-
duino, we also believe that blinking four LEDs concurrently should be easy. An appar-

ently simple problem (“blink four LEDs at different rates”) is not a program that a novice
programmer—an enthusiastic artist or maker—can tackle without running afoul of either the
language (C++) or the complexities of managing both state and hardware timing.

2. Implementation

The execution of the occam-π language on the Arduino is made possible by the Transterpreter
virtual machine [11]. This is the same virtual machine that is used on desktop-class hardware,
and it has also been used in the past on the LEGO Mindstorms RCX [12] and the Surveyor
SRV-1 [13] mobile robotics platform. The Transterpreter on the Arduino uses a megaAVR
specific wrapper3, supporting the ATMega328 and larger processors. The smaller processors
in the megaAVR range do not have enough flash (minimum 32KB) or RAM (minimum 2KB)
required by the virtual machine. Program execution is facilitated by uploading the virtual
machine to the Arduino’s flash memory alongside occam-π bytecode, which can be uploaded
separately.

This section will deal with specific aspects of the implementation that pertain to the
megaAVR family of processors, particularly the implementation of interrupts as well as sleep
modes. Details of other aspects of the virtual machine can be found in the papers referenced
above.

2.1. General Architecture

Scheduler Interpreter Error
Handling Virtual

Machine

Runtime Libraries

Plumbing

User Programs

Interrupts

Im
pl

em
en

te
d

in
 C

Im
pl

em
en

te
d

in
 o

cc
am

Li
nk

ed
 a

s
re

qu
ire

d
Fi

rm
w

ar
e

Serial, PWM, TWI ...

heartbeat, button.press ...

Figure 2. The structure of the software.

Figure 2 depicts the occam-π software stack for the Arduino. Underlying the runtime
system is the virtual machine and the portable bytecode interpreter. The virtual machine
provides a number of services besides just interpreting bytecode: it loads, parses and checks
bytecode located at a specific address, schedules processes, provides a clock for use by both
the virtual machine and user programs, and provides error handling (which catches errors and

3The wrapper contains the platform specific portions of the virtual machine.

attempts to print a useful error message on the serial port). The only service that is exposed
directly to the user however, is the wait.for.interrupt routine, which is used by both
libraries and user code to wait for a particular interrupt to fire.

The runtime libraries, the Plumbing libraries4, and the user program are compiled into a
monolithic bytecode file. Dead-code elimination ensures that unused portions of the libraries
or user program are removed from the generated bytecode, and the symbol and debugging
information is stripped before the code is uploaded to the device. These measures keep the
bytecode files small enough to fit in the limited amount of flash memory available.

The runtime library provides functions for interacting with the serial port, changing the
state of individual pins, or using other features of the chip, such as PWM or TWI. This
functionality is implemented entirely in occam-π, which has direct access to interrupts and
memory (required for manipulating control registers). The Plumbing library is a high level
library, and provides the interface we expect most programmers to use. Plumbing provides a
process oriented programming interface which lets the user “plumb” together processes such
as heartbeat, blink, button.press, pin.toggle5. The user program can mix the services
of the higher level Plumbing library with other libraries as desired. Full access to memory
and interrupts is provided to user code, and therefore the user can write code or libraries
which interact directly with the hardware.

2.2. Interrupts

The megaAVR range used on the Arduino boards support a wide range of both internal and
external interrupt sources. Examples of internal interrupts are those generated by the UART
module (serial communication) and the timer. External interrupts are generated in response
to a change in the state of one of the processors pins: a pulse from a rotary encoder on a servo,
an infrared sensor, or a mechanical switch are all examples of possible external interrupts.

While in simple cases it is possible to poll instead of using interrupts, this style of pro-
gramming has drawbacks and limitations. For example, if a program needs to count very
short pulses from a rotary encoder, it may be hard to ensure that the polling occurs “often
enough.” Put another way, the polling must be frequent enough to guarantee that a pulse is not
missed. As the complexity of a program increases, it becomes harder to ensure that polling
can provide the desired resolution. Thus, the use of interrupts can ensure that a program can
deal with short signals without complicating its timing logic with frequent polling.

The use of interrupts may also provide lower latency between the signal occurring and
the program becoming aware of the signal. This may be useful in situations where a sig-
nal must be acknowledged in some way, for example during communication with a device.
Avoiding polling also allows the processor to enter one of several low power modes, conserv-
ing power while still being able to wake from external or internal interrupts, for example a
signal generated by a switch or an internal source such as serial communication or timeout.

2.2.1. Interrupts on the megaAVR Processors

The ATmega328p processor, which is the one most commonly used in Arduino branded and
derivative hardware6, allows all I/O pins to act as interrupt sources. However, only two pins
have their own dedicated interrupt vector (the external interrupts) and the remaining pins are
multiplexed over three further interrupt vectors (the pin change interrupts) with a maximum

4Full source available for download from http://projects.cs.kent.ac.uk/projects/kroc/trac/
browser/kroc/trunk/tvm/arduino/occam/include/plumbing.module?rev=7082.

5The online (Creative Commons licensed) book Plumbing for the Arduino [14] introduces these components
and the ways they can be connected to form complete programs.

6Other ATmega processors are also used but they are generally similar, varying in amounts of flash, RAM,
I/O pins, or internal devices.

http://projects.cs.kent.ac.uk/projects/kroc/trac/browser/kroc/trunk/tvm/arduino/occam/include/plumbing.module?rev=7082
http://projects.cs.kent.ac.uk/projects/kroc/trac/browser/kroc/trunk/tvm/arduino/occam/include/plumbing.module?rev=7082

of eight pins to an interrupt request. The external interrupts can be configured for different
levels and edges whereas the pin change interrupts are activated by any change in any of the
interrupt requests’ corresponding pins (each of the multiplexed pins on a pin change interrupt
can be individually enabled or disabled). An ATmega processor can also generate a number
of internal interrupts from the UART (serial port), TWI (the Two Wire Interface bus), ADC
(analog to digital converter), a number of timers, and other devices.

2.2.2. Interrupts in the Virtual Machine

The Transterpreter for the megaAVR supports all of the interrupts available on the processor:
the external interrupts, the internal interrupts, as well as the pin change interrupts, which
must use some occam-π support code to demultiplexes the individual pins.

The interrupt support relies on the virtual machine’s inner and outer loops. The inner
loop is the run loop proper, part of the portable virtual machine, which fetches and dispatches
bytecodes. The outer loop repeatedly executes the inner loop, while dealing with any plat-
form specific or exceptional tasks that may arise during execution of the inner loop. If an
platform specific event occurs, such as an interrupt being raised, the inner loop will terminate,
returning control to the outer loop, which can then take the appropriate action.

In order to wire the interrupts into the virtual machine, the processor’s interrupt vectors
are set up to point to a simple interrupt service routine (ISR). This ISR performs two actions:
it sets a flag to indicate to the inner loop that an interrupt has occurred, and it also updates
an internal structure to indicate which interrupt fired. When the interrupt service routine has
finished executing, the inner loop will resume execution and will eventually inspect the status
flag, seeing that an interrupt has fired. When the inner loop is at a safe rescheduling point, it
will return control to the outer loop. The outer loop can then handle the interrupt condition.

Internally, the virtual machine keeps track of all the available interrupts at all times, as
the VM does not know in advance which interrupts will be required by the user program.
For each interrupt, the virtual machine tracks (1) whether it has fired, (2) when it fired, and
(3) whether a process is waiting for that interrupt. This is implemented using two 16-bit
words per interrupt: one holds the identifier of a waiting process (or a value indicating that
no process is waiting) and the other holds the time the interrupt fired (or the lowest possible
time value to indicate that it has not yet fired). This structure uses up a considerable amount
of RAM on the smaller megaAVR parts. For example, on the ATmega328p 12 interrupts are
monitored resulting in a structure taking up 24 16-bit words (48 bytes). This table uses up
close to 2.5% of the available 2KB RAM on the ATmega328p. It is for this reason that the
support for demultiplexing the pin change interrupts are not included in the virtual machine
(which would provide better performance but at the cost of higher RAM usage). Applications
which need to demultiplex pin change interrupts can include the relevant occam-π runtime
support code.

2.2.3. Interrupts in occam-π

Casual users of occam-π on the Arduino need not be aware that the underlying system makes
extensive use of interrupts. In fact, users of the Plumbing library are unlikely to ever realise
that interrupts exist! Other users might need to use the interrupt facilities provided by the
virtual machine in order to write interfaces to external devices. However, working with in-
terrupts should provide no great surprises to the user, as the underlying mechanisms of the
interrupt system closely match the event based semantics of occam-π.

The semantics of the interrupt system provided by the virtual machine is like that
of a channel communication. To demonstrate this, we will use a fictional channel type:
CHAN INTR, which represents an interrupt channel carrying integer value corresponding to
the time the interrupt fired. An interrupt channel can be constructed using this (fictional)
type: CHAN INTR int0:, which a process can now use to wait for an interrupt on interrupt

vector int0. Using this syntax, a process would simply perform a read from the channel
(interrupt ? time.fired) in order to wait for an interrupt. Interrupts, like channel com-
munications, block the reading process until the interrupt (or channel) ‘fires.’ When the in-
terrupt has fired, the process can continue and will have received the time the interrupt fired
into the variable time.fired.

For reasons of implementation simplicity and performance, waiting on an interrupt has
not been implemented as a channel communication. Instead, the interrupt mechanism is im-
plemented using procedure call interface

wait.for.interrupt (VAL INT interrupt.number, INT time.fired)

This procedure call has the exact same semantics as the channel communication shown
above: the process calling wait.for.interrupt sleeps until the interrupt fires. When it
has fired, the process is resumed and receives the time the interrupt fired in the pass-py-
reference parameter time.fired. If the interrupt fired before a call to wait.for.interrupt,
wait.for.interrupt will return immediately supplying the time the interrupt fired.

2.3. Interrupts and Low Power

Traditionally, interrupt handlers are supposed to be very short, simple programs. When a
hardware interrupt fires, state is saved so that the processor can return to its current point of
execution, a pointer is looked up in the appropriate register, and the processor jumps to the
interrupt handling routine. Embedded systems developers are taught to handle the interrupt
as quickly as possible, perhaps by reading a value and storing it in a global variable. Control
is then returned to the central control loop.

Lifting interrupts into the virtual machine has a cost. At the least, the firing of the in-
terrupt must be acknowledged7. If a process is waiting on the interrupt, the workspace of
the waiting process is updated, and then an interrupt is raised within the virtual machine.
This allows the cooperative scheduler to then begin executing occam-π code after the call to
wait.for.interrupt.

Ideally, a “concurrency aware” runtime should put the processor into a low power state
when all of the processes it is executing are waiting for an internal communication, a timer
event, or an external interrupt. To sleep the ATmega family of processors, one simply issues
a single assembly instruction: sleep. For testing, this functionality was tested within the
runtime as part of a branch8.

2.3.1. Polling for Interrupts

Table 2. Average polling latencies for occam-π code (N=18) and standard deviation.

occam (σ)
Poll w/o powersave 0.2267 ms (0.0429 ms)
Poll w/ powersave 0.2212 ms (0.0421 ms)

First, to ascertain that the changes made to the virtual machine did not impact its execution of
code in the general case, we wrote a program that polled continuously for interrupts without
any of the rescheduling that is common in most occam-π programs. This meant that the
scheduler would never have a chance to execute, and the performance of a firmware with or
without powersaving enabled should run the same. This is the case shown in Table 2: neither
runtime performs significantly better when the userspace program is continuously polling.

7http://projects.cs.kent.ac.uk/projects/kroc/trac/browser/kroc/trunk/tvm/arduino/
interrupts.c?rev=7130

8http://projects.cs.kent.ac.uk/projects/kroc/trac/browser/kroc/branches/avr-sleep

http://projects.cs.kent.ac.uk/projects/kroc/trac/browser/kroc/trunk/tvm/arduino/interrupts.c?rev=7130
http://projects.cs.kent.ac.uk/projects/kroc/trac/browser/kroc/trunk/tvm/arduino/interrupts.c?rev=7130
http://projects.cs.kent.ac.uk/projects/kroc/trac/browser/kroc/branches/avr-sleep

2.3.2. Interrupt Latency

Second, we compared the time it takes for the an occam-π program to respond to interrupts
as opposed to a program written in C. It is already known from prior work that sequential
bytecode executes 100x to 1000x slower than native code. To measure interrupt latency, one
Arduino was used to generate digital events that triggered the external interrupts of a second
Arduino. Then, a logic analyzer9 measured the time that it takes for the second Arduino to
wake and toggle pin 13 (the build-in LED). Table 3 shows that the handling of interrupts in
occam-π is roughly 100x slower than a C program that does the same thing.

Table 3. Average interrupt handling latencies for occam-π and C code (N=18) and standard deviation.

occam (σ) C (σ)
Interrupt w/o powersave 0.1425 ms (0.0036 ms) 0.0013 ms (0.0000 ms)
Interrupt w/ powersave 2.4485 ms (0.0210 ms) 2.3339 ms (0.0233 ms)

Of interest is the second row of Table 3. This shows how long it takes to handle an
interrupt when the processor is placed into a power-saving sleep mode. As can be seen, it
does not matter whether the interrupt handling code is written in C or occam-π; it takes more
than 2ms to wake from sleep and begin executing code. The occam-π code is approximately
0.11ms slower than the C, which is (again) in keeping with our previous measurements and
the Transterpreter’s known performance on interpreting sequential code.

The occam-π code does differ from the C code in one critical way: the virtual machine
will not preempt a running process when an interrupt occurs due to the cooperative scheduling
used by occam-π. The virtual machine must instead wait until it reaches a safe point (a
rescheduling point) in the code before it can deschedule the current process and reschedule
another. This could, in theory, mean that there could be no upper bound on the interrupt
latency in an occam-π program. In practice this is not often an issue, and when it is, the
compiler has an option for emitting more reschedule points, and it is possible to manually
insert reschedule points in the code.

2.3.3. Interrupts: Practical Implications

The relatively poor performance of interrupt handling in the Transterpreter has a practical
implication for programmers using our tools: we are limited as to how much information we
can process using interrupts. For example, a serial communications handler written in occam-
π will not be able to process characters at a baud rate of much more than 300bps. (While
higher rates might be possible, it is unlikely much additional work could be done in-between
the receipt of individual characters.)

That said, not all interrupt-driven applications are high performance or require microsec-
ond response times. It is often the case that we need to respond to an interrupt in a sub-
millisecond (but not sub-microsecond) timeframe. In these cases, where the interrupt repre-
sents a clock tick or a sensor crossing a threshold, we can respond in more than adequate
time while simultaneously helping the programmer deal with the traditional complexity of
interrupt-driven programming. In the next section we discuss an environmental sensor that
falls exactly into this category.

3. Case Study: A Room Usage Monitor

Being able to handle interrupt-driven sources in a simple and reliable manner is motivated by
real-world need. Many sensors and devices that might be used with an Arduino change state

9http://www.saleae.com/logic/

http://www.saleae.com/logic/

Figure 3. Sensor exterior with motion and light sensors noted.

Figure 4. Sensor interior with Arduino, microSD card, and RTC noted.

in response to events in the world. For an Arduino to detect that change of state, one must
either busywait or we can wait for an interrupt—which means we allow other processes to
execute while waiting for sensor input from the world.

As an example of a recent, real-world use of interrupts on the Arduino, we share a case
regarding the recent design and development of a sensor that was built and deployed by
undergraduates enrolled in ES210: Research Methods at Allegheny College as part of their
studies in Environmental Science (Figures 3, 4). The students wanted to determine what
kind of energy waste was taking place in classrooms on campus, and the sensors would help
them determine when (1) the lights were on and (2) there was no one in the room. We were
given two weeks to research the components, prototype the sensor, and develop kits that the
students could assemble as part of their laboratory sessions.

3.1. Sensor Design and Implementation

The room usage sensor had to be able to detect the light level in a room as well as detect
when the room was occupied. Commercial off-the-shelf solutions in this space cost at least
$100 to $150, and were all closed or “opaque” solutions, meaning that the students would
have little say regarding how the device should function. For the sensors to be useful to the
students, our design needed to satisfy a number of hardware and software requirements.

Measure Light. Record ambient light level, ideally able to distinguish between “daylight +
lights” vs. “just daylight.”

Fixed-cycle Measurements. Record light levels on a fixed interval (eg. every minute).
Movement-based Measurements. Record light levels when the room is occupied, throttling

measurements (eg. no more than one motion-based event every 2 minutes).
Accurate Timing. All measurements should be stamped with an accurate timestamp.
Easy Assembly. ES students can be assumed to have no prior electronics background of any

sort, yet they must be able to assemble/solder the entire sensor themselves.
Minimize Budget. Build sensors for $50 each or less..
Maximize Reusability. Sensors need to be re-usable on a component-by-component basis

for future use in classroom contexts.
Easily Analyzed Data. Students need to easily be able to extract and analyze data using

commonly available tools (eg. Open Office or Google Spreadsheets).

Our final bill of materials for each sensor came to approximately $75 per sensor. Each
node is capable of the accurate measurement of temperature and light (the latter on a logarith-
mic scale in the same range as the human eye), has an extremely accurate real-time clock (or
RTC, ±2 seconds/year), can detect motion using a common passive infra-red motion sensing
module, and uses a FAT-formatted, microSD card for data storage, allowing students to easily
extract data from their sensor nodes at the end of the experiment. All major components are
modular: the sensing components, RTC, microSD, and microcontroller are all easily removed
from the node and incorporated in other designs, meaning that the total “lost” or “sunk” cost
per node is under $5.

3.2. Sensor Control

The sensor was developed using the Plumbing library for occam-π on the Arduino10. There
are two interrupts from the outside world: the RTC (which triggers an interrupt once every
minute) and the IR motion sensor (which can trigger an interrupt once every five seconds).
There are two analog sensors (temperature and light intensity), and one device attached to
the serial output line (the microSD logger).

Whereas a solution written in C++ would likely need to leverage some kind of global
state to pass sensor data from an interrupt routine (perhaps triggered by the motion sensor)
into a control loop, our firmware has one process in the network that listens to each interrupt
that we might receive from the outside. Both real.clock and motion use digital.input
(defined in the Plumbing library) to wait on interrupts from the RTC and passive IR sensor.
These processes then signal other processes that serve to throttle the rate at which either
clock-based or motion-based events are logged (n.minute.ticker). When enough minutes
have gone by to trigger a clock-based reading, or we have waited enough minutes to register
another motion event, then a SIGNAL is generated to the get.type process.

10Complete source code for the sensor can be found online on GitHub: https://github.com/jadudm/
Paper-ES-Sensor/tree/57b3e14e6922a84d2d6f4a8d3c1034528ea5fcb5.

https://github.com/jadudm/Paper-ES-Sensor/tree/57b3e14e6922a84d2d6f4a8d3c1034528ea5fcb5
https://github.com/jadudm/Paper-ES-Sensor/tree/57b3e14e6922a84d2d6f4a8d3c1034528ea5fcb5

clock

n.minute.ticker

SIGNAL delta

motion

motion.throttle

SIG
N
AL

1

SIG
N
AL

RTC

n.minute.ticker

5

timed.reading

SIG
N
AL

SIG
N
AL

SIGNAL

SIG
N
AL

get.data

SIG
N
AL

store

TX0, D13

1

PIR

READING

A0, A1

startup.reading

SIG
N
AL

init.packet

get.type

READING

get.time

READING

READING

LEGEND

Interrupt

Pin

Constant

ALTing
process

D9

Figure 5. A process network for monitoring room usage.

The get.type process sits in our core pipeline, holding a largely uninitialized READING

record. It is the only process in the core that contains an ALT, meaning we have isolated the
non-determinism/potential randomness in our core data gathering pipeline into one location
only. get.type watches three input channels, and depending on which fires, it populates the
READING record with a flag indicating whether this was an initial reading taken at sensor
startup (which can only happen once), a reading triggered by the clock, or a reading triggered
by motion.

Once we have tagged the record, it is populated with the current time (which we request
from our RTC), the current temperature and light level (which is an instantaneous reading
taken from the temperature and light sensors), and finally this data is serialized as plain text
out to the microSD logging module.

3.3. Development Process

The sensor control code was developed incrementally over a period of six days, from January
1, 2011 through January 6, 2011. At the start of the process, we had no experience with the
RTC, the microSD (which was not part of the initial design), or the sensor platform itself.
At the time that software development commenced, the hardware had not yet been fully
designed: the circuit existed only as a prototyped on a breadboard. Our choice of occam-π
as a language for embedded development made it possible to be co-developing hardware and
software simultaneously without concerns that the fundamental architecture of our control
software might be unsound, or (for that matter) that we might introduce critical bugs along
the way.

The first commit11 explored only the real time clock:

1 PROC main ()
2 SEQ
3 serial.setup(TX0, 57600)
4 zero.clock(FALSE)
5
6 CHAN SIGNAL s:
7 CHAN [3]INT time:
8 CHAN INT light:
9 PAR

10 current.time (s!, time!)
11 adc (A0, VCC, s?, light!)
12 display (time?, light?)
13 :

Listing 4. Blinking four LEDs in parallel at different rates.

This three process network (current.time, adc, and display) only aspired to transmit
the current time and light level back to the developer over a serial link. By the end of the first
day of development, explorations were underway to store data to a 256KB EEPROM12. This
low-cost integrated circuit was originally intended as the destination for the sensor’s data; as
was discovered in testing, it would prove to be difficult for the student researchers to easily
extract their data (violating a design goal for the project), which is a fundamental step in their
research.

The utility of a process-oriented decomposition came when we replaced our data stor-
age medium—originally an EEPROM, later a microSD card—and we were able to easily
avoid fundamental changes in the process network. A single process called store accepted

11https://github.com/jadudm/Paper-ES-Sensor/blob/f0fa1603ce/chronodot-and-ambi.occ
12https://github.com/jadudm/Paper-ES-Sensor/blob/099cec7610/firmware.occ

https://github.com/jadudm/Paper-ES-Sensor/blob/f0fa1603ce/chronodot-and-ambi.occ
https://github.com/jadudm/Paper-ES-Sensor/blob/099cec7610/firmware.occ

a READING structure and serialized it out to the EEPROM. When we switched to a microSD
card (which makes it possible for students to easily read and process the data they have col-
lected), we instead a different physical protocol to access the storage medium, but our pro-
cess network did not change. Instead, we inserted a new process that read from a channel of
type READING and handled the low-level details correctly.

This modular, type-safe approach to embedded programming allowed us to develop a
useful system leveraging the Plumbing libraries quickly. Specifically, we found that the ab-
stractions that have been developed with the intention of making complex tasks simple (like
waiting patiently for an interrupt from the outside world) work incredibly well. After several
weeks of deployment on multiple sensors, our efforts paid off: the students were able to deter-
mine that classrooms sat idle as much as 47% of the time (with lights on), which across cam-
pus amounts to a substantial energy loss. This information will be used to inform decisions
about future renovations on campus (regarding building automation), and the project itself
sets the stage for future collaborations at the intersection of computing and environmental
science within the institution.

4. Conclusion and Future Work

We see two important lines along with our future work should proceed: that which focuses
on the community, and that which continues to explore fundamental issues regarding the
implementation of concurrent and parallel programming languages in embedded contexts.

4.1. Growing and Supporting Community

Our porting of occam-π to the Arduino platform is an extension of previous work involving
the successful use of the Transterpreter on a variety of small robotics platforms in educa-
tional contexts. What differentiates this work from previous efforts is our improved handling
and abstraction over fundamentally complex aspects of hardware/software interaction and
the large number of enthusiastic users in the Arduino community. In order to introduce this
community to occam-π, we have begun work on a small, Creative Commons licensed book
titled Plumbing for the Arduino. This book introduces the occam-π programming language
and Plumbing libraries through a series of exercises grounded fully on the Arduino platform.
Like all open projects, the book is a work in progress, but has been successfully used by
members of the community who (1) have little programming experience or (2) no occam-π
programming experience to become productive explorers and, in some cases, contributors to
our ongoing efforts.

We consistently use process diagrams in the book to introduce Plumbing and the archi-
tecture of the occam-π programs. These diagrams translate, in a straightforward fashion, into
occam-π code. Given this correspondence between diagrams and code there have been sev-
eral attempts to create visual programming environments for occam-π. In [15], we describe a
number of these efforts and our own ongoing efforts towards developing an interactive visual
programming interface for a dataflow language. Currently, we are working on integrating the
Plumbing library into our visual tool with the hope that we might introduce many of the con-
cepts of dataflow programming without having to wrestle with the syntax of occam-π (or any
other language for that matter). We will be investigating whether we can create a large and
diverse enough set of components that occam-π can be easily used to generate sensors, like
the one presented in this paper, for sensor prototyping applications. This would ultimately
enable scientists to rapidly prototype low-cost sensors based on the Arduino platform, and
program them visually using the occam-π language.

4.2. Implementing Concurrency

It is important to note that the Plumbing libraries do not guarantee the programmer protection
from race hazards at a low level. For example, it is possible for two processes to claim that
they are responsible for setting the hardware state of pin 13; one process might try to turn
it off while another might try to turn it on—a classic race. Our runtime currently does not
provide a mechanism for tracking these kinds of resources, but it could (at the expense of
some of the already limited RAM resources on the Arduino).

In the same spirit, we cannot currently protect the user from attempting to wait in mul-
tiple places on the same interrupt. On one hand, this might be useful: if a single pin goes
high, we could want multiple (different) processes to wake up and begin executing. That said,
there are interrupts for which this could be bad: if two processes were to attach to the serial
receive interrupt, we would (again) have a race, where one process might get the first char-
acter, than the other process the second... or, one might starve the other. In the case of the
former example, we could simply use our existing implementation of wait.for.interrupt
and enable the use of BARRIERs on the Arduino—the process waiting for the interrupt could
enroll on the BARRIER, and any processes wanting to synchronize on that event would also
enroll on the same barrier. It is the second case for which we need protection, however: we
do not generally want multiple processes to be able to respond to the same interrupt.

Executing a bytecode interpreter on a processor executing at 16 MHz is, sometimes, a
challenge. For example, we cannot write a pure-occam-π implementation of a serial receiver,
as large programs with lots of parallel processes introduce long delays between opportunities
for the serial handler to execute. Either we run occam-π on an Arduino with a faster processor
(which does not exist), or we might look to other ways to speed up our runtime. There have
been, in the past, explorations that seek to transform occam-π into either native C programs
directly from the bytecode [16], generate C from a new compiler [17], or leverage existing
frameworks like the Low Level Virtual Machine (LLVM) project [18,19]. The first would re-
quire a great deal more work—and would be unique to our toolchain. The second requires (at
the least) updates to the virtual machine’s scheduler API. The third would require developing
an entire backend for LLVM targeting the megaAVR series of processors. While improved
performance would be nice, it has not yet become critical, and therefore we acknowledge the
potential need, but have not yet run into a situation where the Transterpreter on the Arduino
has been completely inadequate.

5. Acknowledgements

This work was supported in part by the Department of Computer Science and the Depart-
ment of Environmental Science at Allegheny College, as well as a grant from the Institute
for Personal Robotics (http://roboteducation.org/). We wish to especially thank those
students in the Spring 2011 offering of ES210: Research Methods at Allegheny College for
their efforts and willingness to explore across disciplinary boundaries.

References

[1] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985. ISBN: 0-131-53271-
5.

[2] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler. The nesc
language: A holistic approach to networked embedded systems. In Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and implementation, PLDI ’03, pages 1–11, New York,
NY, USA, 2003. ACM.

http://roboteducation.org/

[3] Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose, Anmol Sheth, Brian Shucker, Charles Gruen-
wald, Adam Torgerson, and Richard Han. MANTIS OS: an embedded multithreaded operating system for
wireless micro sensor platforms. Mob. Netw. Appl., 10:563–579, August 2005.

[4] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - a lightweight and flexible operating system
for tiny networked sensors. In Proceedings of the 29th Annual IEEE International Conference on Local
Computer Networks, LCN ’04, pages 455–462, Washington, DC, USA, 2004. IEEE Computer Society.

[5] Ian Armstrong, Matthew Jadud, Michael Pirrone-Brusse, and Anthong Smith. The Flying Gator: Towards
Aerial Robotics in occam-π. In Peter Welch, Adam Sampson, Fred Barnes, Jan Pedersen, Jan Broenink,
and Jon Kerridge, editors, Communicating Process Architectures 2011, volume 68 of Concurrent Systems
Engineering Series, pages 329–340, Amsterdam, June 2011. IOS Press.

[6] Massimo Banzi, David Cuartielles, Tom Igoe, and Gianluca Martinoand David Mellis. The Arduino.
http://www.arduino.cc/, February 2011.

[7] Ben Fry and Casey Reas. Processing. http://processing.org/.
[8] Hernando Barragán. Wiring. http://wiring.org.co/.
[9] Tom ’spot’ Callaway. How to tell if a FLOSS project is doomed to FAIL. https://www.

theopensourceway.org/wiki/How_to_tell_if_a_FLOSS_project_is_doomed_to_FAIL, 2009.
[10] Jono Bacon. The Art of Community. Building the New Age of Participation. O’Reilly Media, 2009.
[11] Christian L. Jacobsen and Matthew C. Jadud. The Transterpreter: A Transputer Interpreter. In Ian R. East,

David Duce, Mark Green, Jeremy M. R. Martin, and Peter H. Welch, editors, Communicating Process
Architectures 2004, volume 62 of Concurrent Systems Engineering Series, pages 99–106, Amsterdam,
September 2004. IOS Press.

[12] Jonathan Simpson, Christian Jacobsen, and Matthew C. Jadud. A Native Transterpreter for the LEGO
Mindstorms RCX. In Alistair A. McEwan, Wilson Ifill, and Peter H. Welch, editors, Communicating
Process Architectures 2007, volume 65 of Concurrent Systems Engineering, pages 339–348, Amsterdam,
July 2007. IOS Press.

[13] Matthew Jadud, Christian L. Jacobsen, Jon Simpson, and Carl G. Ritson. Safe parallelism for behavioral
control. In 2008 IEEE Conference on Technologies for Practical Robot Applications, pages 137–142.
IEEE, November 2008.

[14] Matthew Jadud, Christian Jacobsen, and Adam Sampson. Plumbing for the arduino. http://
concurrency.cc/book/.

[15] Jonathan Simpson and Christian L. Jacobsen. Visual process-oriented programming for robotics. In
Communicating Process Architectures 2008, volume 66 of Concurrent Systems Engineering, pages 365–
380, Amsterdam, September 2008. IOS Press.

[16] Christian L. Jacobsen, Damian J. Dimmich, and Matthew C. Jadud. Native Code Generation Using the
Transterpreter. In P. Welch, J. Kerridge, and F. Barnes, editors, Communicating Process Architectures
2006, volume 64 of Concurrent Systems Engineering, pages 269–280, Amsterdam, September 2006. IOS
Press.

[17] Adam T. Sampson and Neil C. C. Brown. Tock: One year on, September 2008. Fringe presentation at
Communicating Process Architectures 2008.

[18] Carl G. Ritson. Translating etc to llvm assembly. In CPA, pages 145–158, 2009.
[19] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis &

transformation. In Proceedings of the International Symposium on Code Generation and Optimization,
CGO ’04, pages 75–88, Washington, DC, USA, 2004. IEEE Computer Society.

http://www.arduino.cc/
http://processing.org/
http://wiring.org.co/
https://www.theopensourceway.org/wiki/How_to_tell_if_a_FLOSS_project_is_doomed_to_FAIL
https://www.theopensourceway.org/wiki/How_to_tell_if_a_FLOSS_project_is_doomed_to_FAIL
http://concurrency.cc/book/
http://concurrency.cc/book/

