Adam T. Sampson School of Computing, University of Kent

Neil C. C. Brown School of Computing, University of Kent

Motivation

My day job

- Big concurrent distributed simulations
- Lots of agents
- Discrete time steps
 - Implemented using a barrier
 - Each step divided into several phases

That's an awfully nice wheel

- Event-based simulation is very similar
- Actions occur at particular times
- Implement as priority queue of actions
 - Sorted by the time at which the action should occur

Barrier

- Has:
 - Enrollment count
 - Set of blocked processes
- When count == size(set), schedule all in set

Clock

- Has:
 - Enrollment count
 - Priority queue of blocked processes
- When count == size(queue), schedule all the processes that have the lowest time

Agent Smith

WHILE alive

- ... query environment
- ... think
- ... write changes back to environment

WHILE now < next.time SYNC bar

Agent Orange

WHILE alive

- ... query environment
- ... think
- ... write changes back to environment

SYNC clock, next.time

 This runs faster – because it doesn't have to wake up on timesteps where it's not doing anything (which is most of them)

Some questions

- What should the semantics for ALT be?
- Is it worth having language bindings?
 - This can just be implemented as a process...

Any questions?

• Clocks are implemented in CHP – go and play!

