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Before we start...
● This is a proposal

– It hasn't yet been implemented

● It's a synthesis of several existing ideas
● It's applicable to a variety of process-oriented 

languages and libraries
– so when I say “occam”, read “occam or JCSP or CHP 

or PyCSP or ...”



3

The problem
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Processes and channels
● In occam, we build programs by composing 

processes connected by synchronous, 
unidirectional channels

read.file decode display
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Protocols
● The messages that may be sent over a channel 

are defined by a protocol
● The compiler checks that the program follows the 

protocol

PROTOCOL POSITION IS INT; INT:

PROTOCOL VIDEO.STREAM
  CASE
    frame; TIME; [][]PIXEL
    end.of.stream
:
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Clients and servers
● A common design 

pattern: server 
processes answer 
requests from client 
processes

● Design rules can be 
used to construct 
complex client-server 
networks safely

server

client

requests responses
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Conversations
● Each interaction between a client and server is a 

conversation, and may contain any number of 
messages

● For example, the loan pattern:
– Client: “Let me borrow your big data structure.”

– Server: “OK, here it is.”

– Client: “Right, I'm done; you can have it back now.”
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Client­server in occam
● Request and response channels have separate 

protocols

PROTOCOL LOAN.REQ
  CASE
    borrow
    return; MOBILE DATA
:

PROTOCOL LOAN.RESP
  CASE
    lend; MOBILE DATA
:
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Safety assured?
● We can check the protocol on each individual 

channel
● But:

– Client: “Let me borrow your big data structure.”

– Server: “OK, here it is.”

– (Client gets distracted and wanders off.)

– Client: “Let me borrow your big data structure.”

– (Boom!)
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What went wrong?
● Each channel's protocol is checked, but the 

overall conversation is not checked
– ... so it's possible for the client and server to get into 

an inconsistent state

● We need a way of describing the two-way 
protocol that the client and server follow
– This is useful for documentation too!
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Some existing approaches
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Honeysuckle (Ian East)
● Language for engineering client-server systems
● A compound service defines the interface to a 

server using simplified code

sequence
  receive command
  if command
    write
      acquire String
    read
      transfer String
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Session types (Kohei Honda)
● A formal way of describing two-way 

communication protocols in terms of the 
communications that may occur

INT! . INT!

(write! . STRING!) | (read! . STRING?)

borrow! . lend? . DATA? . return! . DATA!
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Session types (Honda)
● Originally proposed for use with the pi-calculus
● Several implementations in various languages

– For concurrency

– For network protocols
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State machines
● Session types can be statically checked by 

translation into finite state machines
● Session type is a (state machine, state ID) pair
● Communications update the state ID
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Proposal
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Two­way channels
● Add two-way channels to occam-pi
● Can support communication in either direction

– ... provided both ends agree on the direction
● You can't ALT between c! and c?

– Existing channel implementations (CCSP, JCSP et al.
) already support this

● Superset of existing channel facilities
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Two­way protocols
● Message content and direction is specified using 

two-way protocols
– These are session type declarations

● Conversations must always be started by the 
same end...
– ... so we can always tell what direction the next 

communication will be in

– This is already one of the client-server design rules: 
the client must initiate conversation
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Splitting up
● In classical occam, one input/output operation 

performs the whole one-way protocol

CHAN POSITION c:

c ! 42; 13 POSITION protocol
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Splitting up
● Now, a two-way protocol may describe several 

operations

CHAN LEND c:
MOBILE DATA thing:

SEQ

  c ! borrow
  c ? lend; thing

  -- do something with thing

  c ! return; thing

LEND protocol
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Checking the protocol
● The occam compiler can check this by attaching 

a session type to each channel end
– ... which is updated on each communication

-- c has session type:
--   lend? . DATA? . return! . DATA!

c ? lend; thing

-- c has session type:
--   return! . DATA!
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Delegation's what you need
● Since the compiler tracks the session type of 

each channel end, you can manipulate them 
safely in the middle of a conversation
– Abbreviate them

– Pass them to a procedure

– For mobile channel ends, communicate them to 
another process

● Can also split a one-way communication across 
multiple lines
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Multiple uses
● Can use this to build client-server systems (as in 

Honeysuckle)
● But it's not tied to the client-server design rules, 

so it's useful for other types of process network 
too

● This can replace several existing uses of channel 
bundles – reduces overhead a bit!
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Syntax
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Session types in occam
● You'll notice I haven't shown how you define a 

two-way protocol in occam yet
● There are several possible syntaxes we could 

consider
● I want to get this right – suggestions appreciated!
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One approach

PROTOCOL LOAN IS borrow!;
                 lend?; MOBILE DATA?;
                 return!; MOBILE DATA!:

PROTOCOL STORE IS (read!; STRING?)
                  OR (write!; STRING!):

● Adapt session types notation into occam syntax
– This is what most session types implementations do

– Similar to existing one-way protocol syntax
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Another way
● Use simplified occam code

– ... like Honeysuckle does

– More verbose, but clearer for complex protocols

PROTOCOL LOAN
  SEQ
    ! borrow
    ? lend; MOBILE DATA
    ! return; MOBILE DATA
:
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The problems
● Both approaches have strengths and 

weaknesses...
– Describe the lifetime of the channel, or just a single 

transaction?

– Reusing and extending protocols

– Describing a particular state: LOAN[lend]

– Elegance and similarity to existing syntax

● See the paper for more details
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Thanks!
● Any questions?
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