
Two­Way Protocols
for occam­π

Adam T. Sampson

Computing Laboratory, University of Kent

2

Before we start...
● This is a proposal

– It hasn't yet been implemented

● It's a synthesis of several existing ideas
● It's applicable to a variety of process-oriented

languages and libraries
– so when I say “occam”, read “occam or JCSP or CHP

or PyCSP or ...”

3

The problem

4

Processes and channels
● In occam, we build programs by composing

processes connected by synchronous,
unidirectional channels

read.file decode display

5

Protocols
● The messages that may be sent over a channel

are defined by a protocol
● The compiler checks that the program follows the

protocol

PROTOCOL POSITION IS INT; INT:

PROTOCOL VIDEO.STREAM
 CASE
 frame; TIME; [][]PIXEL
 end.of.stream
:

6

Clients and servers
● A common design

pattern: server
processes answer
requests from client
processes

● Design rules can be
used to construct
complex client-server
networks safely

server

client

requests responses

7

Conversations
● Each interaction between a client and server is a

conversation, and may contain any number of
messages

● For example, the loan pattern:
– Client: “Let me borrow your big data structure.”

– Server: “OK, here it is.”

– Client: “Right, I'm done; you can have it back now.”

8

Client­server in occam
● Request and response channels have separate

protocols

PROTOCOL LOAN.REQ
 CASE
 borrow
 return; MOBILE DATA
:

PROTOCOL LOAN.RESP
 CASE
 lend; MOBILE DATA
:

9

Safety assured?
● We can check the protocol on each individual

channel
● But:

– Client: “Let me borrow your big data structure.”

– Server: “OK, here it is.”

– (Client gets distracted and wanders off.)

– Client: “Let me borrow your big data structure.”

– (Boom!)

10

What went wrong?
● Each channel's protocol is checked, but the

overall conversation is not checked
– ... so it's possible for the client and server to get into

an inconsistent state

● We need a way of describing the two-way
protocol that the client and server follow
– This is useful for documentation too!

11

Some existing approaches

12

Honeysuckle (Ian East)
● Language for engineering client-server systems
● A compound service defines the interface to a

server using simplified code

sequence
 receive command
 if command
 write
 acquire String
 read
 transfer String

13

Session types (Kohei Honda)
● A formal way of describing two-way

communication protocols in terms of the
communications that may occur

INT! . INT!

(write! . STRING!) | (read! . STRING?)

borrow! . lend? . DATA? . return! . DATA!

14

Session types (Honda)
● Originally proposed for use with the pi-calculus
● Several implementations in various languages

– For concurrency

– For network protocols

15

State machines
● Session types can be statically checked by

translation into finite state machines
● Session type is a (state machine, state ID) pair
● Communications update the state ID

16

Proposal

17

Two­way channels
● Add two-way channels to occam-pi
● Can support communication in either direction

– ... provided both ends agree on the direction
● You can't ALT between c! and c?

– Existing channel implementations (CCSP, JCSP et al.
) already support this

● Superset of existing channel facilities

18

Two­way protocols
● Message content and direction is specified using

two-way protocols
– These are session type declarations

● Conversations must always be started by the
same end...
– ... so we can always tell what direction the next

communication will be in

– This is already one of the client-server design rules:
the client must initiate conversation

19

Splitting up
● In classical occam, one input/output operation

performs the whole one-way protocol

CHAN POSITION c:

c ! 42; 13 POSITION protocol

20

Splitting up
● Now, a two-way protocol may describe several

operations

CHAN LEND c:
MOBILE DATA thing:

SEQ

 c ! borrow
 c ? lend; thing

 -- do something with thing

 c ! return; thing

LEND protocol

21

Checking the protocol
● The occam compiler can check this by attaching

a session type to each channel end
– ... which is updated on each communication

-- c has session type:
-- lend? . DATA? . return! . DATA!

c ? lend; thing

-- c has session type:
-- return! . DATA!

22

Delegation's what you need
● Since the compiler tracks the session type of

each channel end, you can manipulate them
safely in the middle of a conversation
– Abbreviate them

– Pass them to a procedure

– For mobile channel ends, communicate them to
another process

● Can also split a one-way communication across
multiple lines

23

Multiple uses
● Can use this to build client-server systems (as in

Honeysuckle)
● But it's not tied to the client-server design rules,

so it's useful for other types of process network
too

● This can replace several existing uses of channel
bundles – reduces overhead a bit!

24

Syntax

25

Session types in occam
● You'll notice I haven't shown how you define a

two-way protocol in occam yet
● There are several possible syntaxes we could

consider
● I want to get this right – suggestions appreciated!

26

One approach

PROTOCOL LOAN IS borrow!;
 lend?; MOBILE DATA?;
 return!; MOBILE DATA!:

PROTOCOL STORE IS (read!; STRING?)
 OR (write!; STRING!):

● Adapt session types notation into occam syntax
– This is what most session types implementations do

– Similar to existing one-way protocol syntax

27

Another way
● Use simplified occam code

– ... like Honeysuckle does

– More verbose, but clearer for complex protocols

PROTOCOL LOAN
 SEQ
 ! borrow
 ? lend; MOBILE DATA
 ! return; MOBILE DATA
:

28

The problems
● Both approaches have strengths and

weaknesses...
– Describe the lifetime of the channel, or just a single

transaction?

– Reusing and extending protocols

– Describing a particular state: LOAN[lend]

– Elegance and similarity to existing syntax

● See the paper for more details

29

Thanks!
● Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

