
Tock: 18 Months On
(this was originally “One Year On”,
but it's been a while since the last CPA...)

Adam T. Sampson
Neil C. C. Brown
 

Computing Laboratory, University of Kent



2

What's Tock?
● A new compiler for concurrent languages
● Provide a solid basis for future work
● Makes experimenting with new features easy
● Compiles into C or C++

– Highly portable (e.g. embedded devices, 
supercomputers)

– Can use existing C compiler as backend

– Decent performance for straightline code



3

Implementation
● Written in Haskell

– Statically-typed, lazy, purely-functional language

– Seems to have lots of users interested in compilers 
and concurrency already (see other presentations)

– Our undergrads have to learn Haskell anyway



4

Nanopasses
● Uses “nanopass” approach

– Lots of small passes

– Easy to extend and to test

pass pass pass pass pass

occam
frontend

Rain
frontend

C/CIF
backend

C++CSP
backend



5

Overview
● We've done various things with Tock lately:

– Rain frontend

– C++CSP backend

– Usage checking

– Automated testing

– Smart pattern-matching

– Performance improvements

● Some of these may be of use to you...



6

Rain
● Tock supports multiple source languages
● We've implemented a frontend for Rain

– Neil's new concurrent language

● We reused most of the existing code
– A few Rain-specific bits

– Other parts have been refactored to be more general



7

C++CSP
● Added a backend for C++CSP – process-

oriented runtime library for C++
– A bit more portable than CCSP (but also slower)

● We developed some useful Haskell techniques to 
share a lot of code between the C and C++ 
backends
– e.g. “WHILE” is the same; “PAR” isn't



8

Usage checking, from alpha...
● The existing occ21 parallel usage checker has 

several problems
– Works by expanding out PAR blocks and checking 

each case individually

– No dynamic PAR replication counts

– Very slow for large programs

● We need a better solution



9

... to Omega
● We use Pugh's Omega test algorithm

– Very efficient integer constraint solver

– Designed for this sort of application (e.g. SPoC)

● Extended algorithm to support occam's 
remainder operator \

● Translate code to constraints, then solve
– e.g. “P writes to i[n], Q reads from i[n+1]”

– If there's a solution, it's not safe!



10

Automated testing
● Tock now has a large automated test suite
● HUnit: unit tests for functions and passes
● QuickCheck: test passes with randomly-

generated data, and ensure properties hold
– Works best for mathsy stuff (e.g. Omega test)

● Full-toolchain tests: real applications, and code 
fragments that test particular cases
– ... including the existing occam-pi test suite



11

Smart patternmatching
● Pattern-matching is very common in compilers
● Good ways of doing this in dynamically-typed 

languages like Scheme... but not Haskell yet
● We've developed a generics-based pattern 

matching library for Haskell
– Reusable pattern fragments

– Fuzzy matching



12

Performance improvements
● When we presented Tock at CPA2007, we were 

a bit concerned about the compiler's 
performance

● It turns out that while lots of people have written 
compilers in Haskell...
– ... not many had written compilers with 50+ passes 

and over a million data values in the AST of a large 
program

● So we had some scalability problems to solve



13

Making passes faster
● We've developed a new generics system for 

writing transformation/analysis passes
– Also useful for other generic programming problems

● Dynamically prunes the AST search based on 
what it's looking for
– e.g. you aren't going to find a PAR inside a type

● Avoids runtime type introspection by using 
typeclasses to do more work at compile time



14

Making Tock less lazy
● Haskell is a lazy language

– Defer calculations until they're actually needed

● Allows some cool tricks (e.g. infinite lists), but 
has memory usage problems

● We found some common Haskell standard library 
features were excessively lazy...
– ... but we've fixed the problems

– Tock now uses less memory than occ21!



15

Where next?
● Full occam-pi support

– The infrastructure is there now

● Bytecode backend for very small devices



16

That's all, folks
● All the above work has been written up...

– ... although not all of it has been published yet

– Ask us if you're interested in reading more!

● See: http://offog.org/tock

● Any questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

