
Compiling occam to C with Tock

Adam Sampson

ats@offog.org

University of Kent

http://www.cs.kent.ac.uk/

Compiling occam to C with Tock – p. 1

Introduction

• We do most of our work with occam-π
• Big new project starting in a couple of months
• Existing compiler:

• Derived from Inmos’s original compiler
• Poor straight-line code performance
• Enormous codebase
• Hard to maintain and extend

• . . . so we’ve been working on replacing it

Compiling occam to C with Tock – p. 2

Previously on CPA. . .

• 2004: Jacobsen/Jadud, The Transterpreter: A
Transputer Interpreter
→ The Transterpreter – portable occam runtime

• 2005: Barnes, Interfacing C and occam-π
→ CIF – C bindings to occam runtime

• 2006: Jacobsen/Dimmich/Jadud, Native Code
Generation using the Transterpreter
→ 42 – nanopass occam compiler

• 2006: Barnes, Compiling CSP
→ NOCC – rewrite of occ21

Compiling occam to C with Tock – p. 3

Tock

• A new occam compiler (currently supports occam2.1
and some of occam-π)

• Generates efficient, portable C99 code
• Uses the existing KRoC runtime through CIF
• Implemented using Haskell

• Lazy functional language, many users at Kent
• Widely used for compiler implementation
• Indentation-based, supports lightweight

concurrency, . . .
• Designed to be easy to understand and extend

Compiling occam to C with Tock – p. 4

Nanopass compilation

code gen

output

parser ...
AST

pass pass pass pass

source

• Parser turns source code into an AST
• Many small passes transform the AST

• Simplifying, restructuring, annotating, checking. . .
• Each pass does one thing only

• Output simply generated from the final AST
• Can be more complicated than this – e.g. usage

checker

Compiling occam to C with Tock – p. 5

Parsing

• Uses Parsec – combinator-based parsing library
• Each production is a monadic function that returns

an AST fragment for the thing it’s matching
(e.g. “a SEQ process”, “an expression of type T”)

sequence
= do { sSEQ ; eol ; indent ;

ps <- many1 process ; outdent ;
return (Seq ps) }

• Operators provided to combine productions
(e.g. “X or Y”, “X then Y”)

specifier = dataType <|> portType <|> ...

Compiling occam to C with Tock – p. 6

Parsing problems

• Parsing occam is slightly complicated
• Tokeniser must keep track of indentation
• Parser needs to check types to resolve ambiguities

(e.g. in c ! x, is x a variable or a variant tag?)
• Parsec can do Prolog-style backtracking and cuts to

handle ambiguous productions – it has “infinite
lookahead”

• The syntax in the occam2.1 manual contains a
number of errors

Compiling occam to C with Tock – p. 7

Passes

• Turn the occam AST into something closer to C
• Some of the passes in Tock:

• Resolve user-defined types
• Convert FUNCTIONs to PROCs
• Simplify array expressions
• Wrap PAR processes in PROCs
• Convert free names to arguments
• Move nested PROCs to top level

• Different target languages would need different
passes

Compiling occam to C with Tock – p. 8

How passes work

• Match patterns in the AST and apply transformations
to them

• Uses Haskell’s “Scrap Your Boilerplate” generic
functions and pattern matching

cStyleNames = everywhere (mkT doName)
where

doName :: Name -> Name
doName (Name s) =

Name [if c == ’.’ then ’ ’ else c
| c <- s]

• Can use different traversal approaches as
appropriate

Compiling occam to C with Tock – p. 9

Generating C code

• Output language is C99 – latest C standard
• Inlining, better scoping, numeric types, better

maths library. . .
• Tries to generate the same code a human would write

• Compiler can do a better job of optimisation
• Easier to debug with standard tools

• Better runtime error reporting than occ21

Compiling occam to C with Tock – p. 10

Example: occam code

PROC integrate (CHAN OF INT in, out)
INT total:
SEQ

total := 0
WHILE TRUE

INT n:
SEQ
in ? n
total := total + n
out ! total

:

Compiling occam to C with Tock – p. 11

Example: Tock C code

void integrate u6 (Process *me,
Channel *in u2, Channel *out u3) {

int total u4;
total u4 = 0;
while (true) {

int n u5;
ChanInInt (in u2, &n u5);
total u4 = occam add int (total u4,

n u5, "demo.occ:13:18");
ChanOutInt (out u3, total u4);

}
}

Compiling occam to C with Tock – p. 12

But you can’t do that in C!

• CIF mostly hides the details of doing occam-style
scheduling with C processes

• Don’t need to worry about context switching
• Must allocate an appropriate amount of stack for

each process
• Analyse the output of the C compiler, looking for

stack adjustment instructions

Compiling occam to C with Tock – p. 13

Whole-program compilation

• Tock translates the entire program to C at once,
including libraries

• Allows better optimisation (e.g. inlining)
• Takes longer, though!
• Libraries should be parsed and checked ahead of

time

Compiling occam to C with Tock – p. 14

A comparison with SPoC

• SPoC also generates C from occam
• Compiles in its own occam runtime
• Avoids stack usage entirely by putting local variables

in structures
• Avoids context switching by compiling each PROC into

a state machine
• . . . which makes the code hard to optimise
• Limited runtime checks

Compiling occam to C with Tock – p. 15

Example: SPoC C code

void P integrate accumulate
(tSF P integrate accumulate *FP) {

while (true) {
switch (FP-> Header.IP) {
CASE(0): FP->total 55 = 0;

GOTO(1);
CASE(2): INPUT4(FP->in 53, &FP->n 56, 3);
CASE(3): FP->total 55 =

FP->total 55 + FP->n 56;
OUTPUT4(FP->out 54,

&FP->total 55, 4);
CASE(4):
CASE(1): if (true) GOTO(2);

RETURN();
...

Compiling occam to C with Tock – p. 16

How much faster?

• Benchmark: compute 1000x1000 Mandelbrot set at
double precision, convert to packed bitmap image,
and compute checksum

• Exercises real and integer maths, but not
communication

Compiler Time per image (ms)
KRoC 3,889
SPoC 409
Tock 450

• Note that SPoC does no range/overflow checking!

Compiling occam to C with Tock – p. 17

Compiler size comparison

Compiler Language Lines of code
occ21 (KRoC) C 150,000

NOCC C 70,000
occ2c (SPoC) C/GMD 24,000

Tock Haskell 7,000

• Estimate Tock will be <15,000 lines for full occam-π
support

• Tock should be more accessible for students and
casual experimenters

Compiling occam to C with Tock – p. 18

Future plans

• Finish full occam-π implementation
• Better usage checking
• Precompiled library support
• Implement CIF on the Transterpreter runtime

• More portable
• Should be much faster than CCSP on

uniprocessors
• Investigate alternative backends

• C++CSP
• ETC bytecode

Compiling occam to C with Tock – p. 19

One more thing. . .

• (Nothing to do with Tock)
• For years, we’ve been getting students on our

parallelism course to write ASCII-art demos
• We have SDL bindings for occam-π already. . .

Compiling occam to C with Tock – p. 20

Occade

• occam-π module for writing simple graphical arcade
games

• All based around the client-server pattern
• Features:

• Sprites
• Text
• Background playfield
• Collision detection
• Input events

• Here’s a demo. . .

Compiling occam to C with Tock – p. 21

The end

• Any questions?
• For more on Tock, see:
http://offog.org/tock

• For more on Occade, see:
http://offog.org/occade

Compiling occam to C with Tock – p. 22

	Introduction
	Previously on CPAldots
	Tock
	Nanopass compilation
	Parsing
	Parsing problems
	Passes
	How passes work
	Generating C code
	Example: occam code
	Example: Tock C code
	But you can't emph {do} that in C!
	Whole-program compilation
	A comparison with SPoC
	Example: SPoC C code
	How much faster?
	Compiler size comparison
	Future plans
	One more thingldots
	Occade
	The end

