Compiling occam to C with Tock

Adam Sampson

at s@f fog.org

University of Kent
http://ww.cs. kent. ac. uk/

Compiling occam to C with Tock — p. 1

Introduction

We do most of our work with occam-Tt
Big new project starting in a couple of months
Existing compiller:
Derived from Inmos’s original compiler
Poor straight-line code performance

Enormous codebase
Hard to maintain and extend

.. S0 we’ve been working on replacing it

Compiling occam to C with Tock — p. 2

Previously on CPA...

2004: Jacobsen/Jadud, The Transterpreter: A
Transputer Interpreter
— The Transterpreter — portable occam runtime

2005: Barnes, Interfacing C and occam-Tt
— CIF — C bindings to occam runtime

2006: Jacobsen/Dimmich/Jadud, Native Code
Generation using the Transterpreter
— 42 — nanopass occam compiler

2006: Barnes, Compiling CSP
— NOCC - rewrite of occ21

Compiling occam to C with Tock — p. 3

Tock

A new occam compiler (currently supports occam2.1
and some of occam-1)

Generates efficient, portable C99 code

Uses the existing KRoC runtime through CIF
Implemented using Haskell

Lazy functional language, many users at Kent
Widely used for compiler implementation

Indentation-based, supports lightweight
concurrency, ...

Designed to be easy to understand and extend

Compiling occam to C with Tock — p. 4

Nanopass compilation

pass code gen

source output

Parser turns source code into an AST

Many small passes transform the AST
Simplifying, restructuring, annotating, checking. ..
Each pass does one thing only

Output simply generated from the final AST

Can be more complicated than this — e.g. usage
checker

Compiling occam to C with Tock — p. 5

Parsing

Uses Parsec — combinator-based parsing library

Each production is a monadic function that returns
an AST fragment for the thing it’s matching
(e.g. “a SEQprocess”, “an expression of type T7)

seguence
= do { sSEQ ; eol ; i1ndent ;
Pps <- manyl process ; outdent ;
return (Seq ps) }

Operators provided to combine productions
(e.g. “XorY” “Xthen Y")

speci fier = dataType <|> portType <[> ...

Compiling occam to C with Tock — p. 6

Parsing problems

Parsing occam is slightly complicated
Tokeniser must keep track of indentation

Parser needs to check types to resolve ambiguities
(e.g.Inc ! Xx,Is x a variable or a variant tag?)

Parsec can do Prolog-style backtracking and cuts to
nandle ambiguous productions — it has “infinite
ookahead”

The syntax in the occam2.1 manual contains a
number of errors

Compiling occam to C with Tock — p. 7

Passes

Turn the occam AST into something closer to C

Some of the passes in Tock:
Resolve user-defined types
Convert FUNCTI ONs to PROCs
Simplify array expressions
Wrap PAR processes in PROCs
Convert free names to arguments
Move nested PRQOCs to top level

Different target languages would need different
passes

Compiling occam to C with Tock — p. 8

How passes work

Match patterns in the AST and apply transformations
to them

Uses Haskell's “Scrap Your Bollerplate™ generic
functions and pattern matching

cStyl eNanmes = everywhere (nkT doNane)

wher e
doNanme :: Nane -> Nane

doNane (Nanme s) =
Nane [If ¢ ==".7 then ' else c

| ¢ < s8]

Can use different traversal approaches as
appropriate

Compiling occam to C with Tock — p. 9

Generating C code

Output language Is C99 — latest C standard

Inlining, better scoping, numeric types, better
maths library. ..

Tries to generate the same code a human would write
Compiler can do a better job of optimisation
Easier to debug with standard tools

Better runtime error reporting than occ21

Compiling occam to C with Tock — p. 10

Example: occam code

PROC Iintegrate (CHAN OF I NT 1 n, out)
| NT total:
SEQ
total := 0
VWH LE TRUE
| NT n:
SEQ
In ? n
total := total + n
out ! total

Compiling occam to C with Tock — p. 11

Example: Tock C code

voli d Integrate_u6 (Process *ne,
Channel =*in.u2, Channel =*out _u3) {

I nt total _u4,;

total .u4 = 0O;

while (true) {
I Nt n_ub;
Chanlnlnt (iIn.u2, &n_ud);
total _.u4 = occamadd. nt (total _u4,

n_.ub, "deno.occ:13:18");

ChanQutInt (out_u3, total _ud),

Compiling occam to C with Tock — p. 12

But you can’t do that in C!

CIF mostly hides the detalils of doing occam-style
scheduling with C processes

Don’t need to worry about context switching

Must allocate an appropriate amount of stack for
each process

Analyse the output of the C compiler, looking for
stack adjustment instructions

Compiling occam to C with Tock — p. 13

Whole-program compilation

Tock translates the entire program to C at once,
iIncluding libraries

Allows better optimisation (e.g. inlining)
Takes longer, though!

Libraries should be parsed and checked ahead of
time

Compiling occam to C with Tock — p. 14

A comparison with SPoC

SPoC also generates C from occam
Compiles in its own occam runtime

Avoids stack usage entirely by putting local variables
In structures

Avoids context switching by compiling each PRCC into
a state machine

...which makes the code hard to optimise
Limited runtime checks

Compiling occam to C with Tock — p. 15

Example: SPoC C code

vol d P.i ntegrate_accunul ate
(t SF_P_.i ntegrate_accunul ate *FP) {
while (true) {
sw tch (FP->_Header.|P) {

CASE(0) :

CASE(2) :
CASE(3) :

CASE(4) :
CASE(1) :

FP->total 55 = O;
GOoTq(1) ;
| NPUT4(FP->I n. 53, &FP->n_56, 3);
FP->total 55 =

FP- >t ot al .55 + FP->n_56;
OUTPUT4(FP- >out _54,

&FP- >t ot al 55, 4);

'f (true) GOIqx 2),;
RETURN() ;

Compiling occam to C with Tock — p. 16

How much faster?

Benchmark: compute 1000x1000 Mandelbrot set at
double precision, convert to packed bitmap image,
and compute checksum

Exercises real and integer maths, but not
communication

Compiler Time per image (ms)

KRoC 3,889
SPoC 409
Tock 450

Note that SPoC does no range/overflow checking!

Compiling occam to C with Tock — p. 17

Compiler size comparison

Compiler Language Lines of code

occ21 (KRoC) C 150,000
NOCC C 70,000
occ2c (SPoC) C/GMD 24,000
Tock Haskell 7,000

Estimate Tock will be <15,000 lines for full occam-1t
support

Tock should be more accessible for students and
casual experimenters

Compiling occam to C with Tock — p. 18

Future plans

Finish full occam-mtimplementation
Better usage checking
Precompiled library support

Implement CIF on the Transterpreter runtime
More portable
Should be much faster than CCSP on
uniprocessors

Investigate alternative backends
C++CSP
ETC bytecode

Compiling occam to C with Tock — p. 19

One more thing...

(Nothing to do with Tock)

For years, we've been getting students on our
parallelism course to write ASCIl-art demos

We have SDL bindings for occam-tt already. ..

Compiling occam to C with Tock — p. 20

Occade

occam-1t module for writing simple graphical arcade
games

All based around the client-server pattern

Features:
Sprites
Text
Background playfield
Collision detection
Input events

Here's a demo...

Compiling occam to C with Tock — p. 21

The end

Any gquestions?

~or more on Tock, see:
nttp://offog. org/tock

~or more on Occade, see:
nttp://offog. org/ occade

Compiling occam to C with Tock — p. 22

	Introduction
	Previously on CPAldots
	Tock
	Nanopass compilation
	Parsing
	Parsing problems
	Passes
	How passes work
	Generating C code
	Example: occam code
	Example: Tock C code
	But you can't emph {do} that in C!
	Whole-program compilation
	A comparison with SPoC
	Example: SPoC C code
	How much faster?
	Compiler size comparison
	Future plans
	One more thingldots
	Occade
	The end

