Communicating Process Architectures 2006 77
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
IOS Press, 2006

pony — Theoccam-Tt
Network Environment

Mario SCHWEIGLER

ms44@kent.ac.uk / research@informatico.de

Adam SAMPSON
atsl@kent.ac.uk /ats@offog.org

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, UK

Abstract. Although concurrency is generally perceived to be a ‘haudbjesct, it can
in fact be very simple — provided that the underlying modaliiaple. Theoccam-1t
parallel processing language provides such a simple yeg¢golxconcurrency model
that is based on CSP and ttezalculus. This paper presentsry, theoccam-1t Net-
work Environment.occam-1t and ny provide a new, unified, concurrency model
that bridges inter- and intra-processor concurrency. €hables the development of
distributed applications in a transparent, dynamic anttlizigcalable way. The first
part of this paper discusses the philosophy behimalypexplains how it is used, and
gives a brief overview of its implementation. The second paaluates pny’s perfor-
mance by presenting a number of benchmarks.

Keywords. pony, occam-pi, KRoC, CSP, concurrency, networking, udifigodel,
inter-processor, intra-processor, benchmarks

Introduction

Concurrency has traditionally been seen as an ‘advanceggult is taught late (if at all)
in computer science curricula, because it is seen as a nad-gxtension of the ‘basic’
sequential computing. In a way, this is surprising, sine‘teal world’ around us is highly
concurrent. It consists of entities that are communicanity each other; entities that have
their own internal lives and that are exchanging informabetween each other.

Process calculi such as CSP [1] and thealculus [2], with their notion of processes
and channels, are particularly suited to model the ‘realldijoespecially since there is a
programming language available that is based on those faatwuli, but still easy to under-
stand and to use. This languageoicam-T11, the new dynamic version of the classical-
cam? [3]. Originally targeted at transputer [4] platforms, it svspecifically designed for the
efficient execution of fine-grained, highly concurrent paogs. Still, most people associate
concurrency with the traditional approach of threads, $omkd semaphores rather than with
the much more intuitive one of a process algebra.

Networking is increasingly important in today’s world. @nally a merely academic
topic, it has gained significant importance since the 1968gecially due to the advent of

loccam is a trademark of ST Microelectronics. The origiricam language was based on CSP only;
features from thet-calculus, particularly the notion of channel and proceebitity, have been incorporated in
occam-ttrecently.

78 M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment

the internet as an everyday ‘commaodity’ on the consumer atafihe development of large
distributed applications is one of the modern challenge®mputer science. Infrastructures
such as the Grid [5,6,7] are specifically designed for the&ridigion of large computational
tasks onto decentralised resources.

Distributed applications are typicallyesignedo be distributed right from the start —
the mechanisms used for distribution must be specificaltiressed by the developer. The
pony? project [8] is targeted towards bringing concurrency antivoeking together in a
transparentand dynamic yet efficient way, using tbecam-ttlanguage as the basis for the
development of distributed applications. This is possildeause, as stated above, the world
is concurrent by nature, which includes networks of comsutd& programming language
such aoccam-11, which by design captures this ‘natural’ concurrency, idipalarly suited
as the basis for a unified concurrency model.

1. Background and Motivation
1.1. The Need for a Unified Concurrency Model

Concurrency is simple — provided that the underlying modsingple.occam-ttoffers just
that, a concurrency model that is simple to use, yet basedeofotmal algebras of CSP and
the T-calculus. One of the major advantagesootam-Ttis that it encourages component-
based programming. Eadtcam-1t process is such a component, which can communicate
with other componentaccam-1t applications may be highly structured, since a group of
processes running in parallel can be encapsulated intghehievel’'occam-Ttprocess, and
so on.

This component-based approach is the particular charotcdm-1t programming. It
allows the development of sub-components independerdiy feach other, as long as the
interface for communication between those sub-compongitearly defined. lroccam-Tr,
this interface is provided (primarily) by channels; thislides both the ‘classicabccam
channels and the new dynamic channel-tyg&% Once all components of anccam-Tt
application have been developed, they just need to be ‘pllitiggether’ via their interfaces.

We want to utilise the advantagesaxfcam-1ts concurrency model for the development
of distributed applications. In order to do this succesgfiilis necessary to extermtcam-1t
in such a way that the distribution of components is trarspato the components’ devel-
opers. As long as the interface between components (i.eegpses) is clearly defined, the
programmer should not need to distinguish whether the gsooe the ‘other side’ of the
interface is located on the same computer or on the otherfehe globe.

1.2. Aspects of Transparency

pony, the occam-1t Network Environment, extendsccam-Tt in such a transparent way.
There are two aspects of transparency that are impodantanticiransparency angrag-
matictransparency.

1.2.1. Semantic Transparency

occam was originally developed to be executed on transputersiréingputer was a micro-
processor with a built-in micro-coded scheduler, allowihg parallel execution abccam

2The name ‘pny’ is an anagram of the first letters af]ccam, [pli and [n]etwork; plus a [y] to make it a
word that is easy to remember.

3Channel-types are bundles of channels. The ends of chiyped-are mobile and may be communicated
between processes.

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 79

processeccam channels were either emulated within a single transputkeif ends were
held by processes on the same transputer (‘soft channetsijiplemented using the trans-
puter’s links. Each transputer had four links by which it icbbhe connected to other trans-
puters (‘hard channels’). The late T9000 transputer [10jctvwas the last transputer being
developed and which went out of production shortly afteritgbeen introduced by Inmos,
additionally offered a/irtual Channel Processor (VCH)L1] which allowed many logical
occam channels to be multiplexed over the same physical link.

This approach allowed the simple construction of netwofksamsputers offering large
computing power, despite the (comparatively) low processiapabilities of a single trans-
puter. The great advantage of this approach was that thegmoger of aroccam process
did not have to care whether a specific channel was a soft aidechannel. This distinction
was transparent from the programmer’s point of view — theag#ios of channel communi-
cation was identical for atbccam channels.

After the decline of the transputer, theccam For All' [12] project successfully saved
theoccam language from early retirement. Althougbcam was originally targeted at trans-
puters, the aim was to bring the benefits of its powerful comeicy model to a wide range
of other platforms. This was achieved by developingdKRthe Kent Retargetableccam
Compiler [13]. What had been lost, however, was the suppohdoi channels, since without
transputers there were no transputer links anymore.

The pny environment re-creates the notion of semantic trangpgfeom the old trans-
puter days. pny enables the easy distribution of accam-mtapplication across several pro-
cessors — or back to a single processor — without the needdngehthe application’s
components.

With the constant development of KR, occam has been developed intccam-Tr,
which offers many new, dynamic, features [14,9,1%5jny takes into account and exploits
this development. In the classicatcam of the transputer days, channels were the basic
communication primitive, and semantic transparency edibetween soft and hard channels.
pony’s basic communication primitive aoecam-1ts new channel-types, and there is seman-
tic transparency between non-networked channel-typesatvdork-channel-types (NCTSs)
This transparency includes the new dynamic featuresxodm-Tt

All occam-TtPROTOCOLS can be communicated over NCTs. Mobile semantics are pre-
served as well, both when mobile data [14] is communicatest BICTs, and when ends
of (networked or non-networked) channel-types are comoated over other channel-types.
The semantics is always the same, and the developer a¢@m-1t process does not have
to care whether a given channel-type is networked or not.eSefpony’s general routing
mechanisms are similar to the Virtual Channel ProcessoreoT 8000 transputer; however,
routing in pony is dynamic, rather than static like on the transputer.

1.2.2. Pragmatic Transparency

When achieving semantic transparency, we do not want to payvoth bad performance.
For instance, a system that uses sockets for every singlenoaination, including local
communication, would still be semantically transparent irea the developer would not
have to distinguish between networked and non-networkethamication — but it would
be hugely inefficient. Here the other important aspect be&soralevant, namely pragmatic
transparency. This essentially means that the infrastrei¢hat is needed for network com-
munication is set uputomaticallyby the ppny environment when necessary. Due tmp's
dynamic routing, it is used if and only if needed.

Local communication over channel-types is implementeche ttaditionaloccam-1t
way, involving access to the channel-word only. In this vthg, pony environment preserves
one of the key advantagesafcam-rtand KRoC, namely high performance and lightweight,
fine-grained concurrency. Only when the two ends of an NCT atdatated on the same

80 M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment

node of a distributed application, communication betwdemt goes through the infrastruc-
ture provided by pny. But also for this case, high performance was one of the kpgdais
during pony’s development; the network communication mechanisrpsiiy are specifically
designed to reduce network latency.

This pragmatic transparency approach, together with alsisgtup and configuration
mechanism, makes thepy environment very dynamic and highly scalable. The togplo
of a distributed application written iaccam-ttand pny is constructed at runtime and can
be altered by adding or removing nodes when needed or whgméw®me available.

1.3. History

The development ofgny and its predecessors has gone through a number of staggs. O
inally, it started as an undergraduate student project #1206]. In autumn 2001, the first
major version was released as part of an MSc dissertatioaruhd name ‘Distributedc-
cam Protocol’ [17]. This version was implemented fully@cam and offered a certain de-
gree of transparency. Due to the limitations of tweam language at that time, it was far
from being fully semantically transparent, however.

Since then, the gny project has continued as part of a Ph8,19,8]. During this
time, theoccam language was extended significanflgdding many dynamic features. This
affected the pny project two-fold. Firstly, the new dynamic featureoztam-rmenabled the
pony environment to be implemented in a semantically and pedigaily transparent way;
being implemented almost entirely accam-Tt, with a small part implemented in C, as well
as some compiler-level support built-in directly in KR. Secondly, features such as the new
dynamic channel-types were themselves incorporated ipdhg environment.

The mobility of ends of network-channel-types was inspiogdhe mobile channels in
Muller and May'’s Icarus language [20]. However, implemegtmobility for pony’s NCT-
ends is substantially more complex because it needs tortekac¢count the special properties
of channel-types compared to plain channels. This incldkdegact that channel-types are
bundles of channels, as well as that channel-type-ends mapdred and that shared ends
must be claimed before they can be used. All these featutetohee incorporated into NCTs
as well, in order to achieve semantic transparency.

1.4. Structure of This Paper

Section 2 introduces the terminology used in this paper aedents the architecture of
the pony environment. Sections 3 through 5 discuss the charattariof pny nodes, their
startup, and the startup of the Application Name Server.alloeation of NCTs is covered in
Section 6, the shutdown obpy in Section 7. Section 8 is concerned with the configuration
of the pony environment.

Section 9 outlines a samplepy application. A brief overview of the implementation of
pony is given in Section 10. Section 11 presents a number offmearks that were carried
out to examine pny’s performance. Section 12 concludes with a discussioth@fwork
presented in this paper, along with an outline of possiktieréuresearch.

“4partly under the provisional name ‘Ki€.net’
Sand renamed tooccam-Tt

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 81
2. Architecture and Terminology
2.1. Applications and Nodes

A group ofoccam-ttprograms which are interconnected by tlapinfrastructure is called a
pony application Each application consists of sevenaldes— onemastemode and several
slavenodes.

The term ‘node’ refers to anccam-1t program which is using thegmy environment.
That is, there may be several nodes on the same physical temihese nodes may belong
to the same application or to different applications. In tle&-networked world, node and
application would be congruent. In the networked world, ppliaation is made up of several
nodes; the master is the logical equivalent of the main m®oéa non-networkedccam-1t
program (in the sense that all the ‘wiring’ of the applicatmriginates from there).

2.2. Network-channel-types

A network-channel-type (NCT9 a channel-type that may connect several nodes, i.e. whose
ends may reside on more than one node. An individual NCT-endyal resides on a sin-
gle node, and like any channel-type, an NCT may have many emables if one or both
of its ends are shared. NCTs are the basic communicationtwenfior pony applications.
Nodes communicate with each other over NCTs, using the samardgies as for conven-
tional channel-types. This includes the protocol semarmtithe items that are communicated
over the NCT’s channels as well as the semantics of NCT-ends.

Like any other channel-type-end, NCT-ends may be commuedaater channels, which
includes channels of other NCTs. Also, if an NCT-end is shatedust be claimed before
it can be used, and it is ensured by theny infrastructure interconnecting the application
that every shared NCT-end can only be claimed once at any givenacross the entire
application. Practically, the master node queues claimasts for each end of each NCT and
ensures that each NCT-end is only claimed once at any given tim

NCTs are either allocategkplicitly, under a name that is unique within the application,
or implicitly by moving ends of locally allocated channel-types to a remnatde.

2.3. The Application Name Server

An Application Name Server (ANB)an external server that administrates applicationshEac
application has a name that is unique within the ANS by whiégh administrated. Nodes of
the application find each other by contacting the ANS. Thixept is similar to the ‘Channel
Name Server’ in JCSP.net [21,22], only on the level of applices rather than channels
(respectively NCTs for @ny). This allows a better abstraction, as well as a simpleneza
spacing.

With pony, NCTs are still allocated by using names, but this is mathdnyethe master
node of the application to which the NCT belongs, rather thathle ANS. This two-level
approach makes it simpler to have a single ANS for many agptios. In JCSP.net, it is also
possible to administrate network-channels of many sepd@BP.net applications within the
same Channel Name Server; however, avoiding naming conflickee programmer’s task
there.

The ANS stores the location of the master node of an apphicatvhen a slave node
wants to join the application, it would contact the ANS anduest the master’s location.
Then the slave would contact the master node itself. Eagle slade of an application has a
networklink to the master node. Links between slave nodes are only s$tathiwhen this
becomes necessary, namely when an NCT is stretched betwessntito slave nodes for the
first time.

82 M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment
2.4. Network-types

The pony environment has been designed to support potentiallyymatwork infrastruc-
tures. These are referred toraestwork-typesn the following. Currently, the only supported
network-type is TCP/IP. However, adding support for othéwoek-types in the future would
be easy because the internal structureasfypis modular.

In order to add support for a new network-type, modified wersiof the network drivers
and the ANS would have to be added tmy. These only comprise a relatively small part of
the pony infrastructure. The non-network-type-specific compas®f ppny would interact
with the new network drivers using the existing interface.

2.5. Variants of Channel-types and Their Graphical Repredem

For the remainder of this paper, we will refer to the follogiimariants of channel-types:
one2onechannel-types have an unshared client-end and an unshemet-end.any2one
channel-types have a shared client-end and an unsharest-se.one2anychannel-types
have an unshared client-end and a shared server-end.,laastBanychannel-types have a
shared client-end and a shared server-end. This propelithemceforth be called the2x-
typeof the channel-type. Please note that the x2x-type is a psopeconcrete instances of
a channel-type, not of its type declaration.

Figure 1 shows how channel-types are depicted in this p@perclient-end of a channel-
type is represented by a straight edge, the server-end bypg@dge. Shared ends are dark-
ened. So, for instance a one2one channel-type has no ddrkeges, whereas an any2one
channel-type has the straight edge darkened and the padtgsinot darkened. The other
channel-type variants are depicted accordingly.

one2one > I any2one >

Figure 1. Channel-type variants

3. Running pony on a Node

On each node of agmy application, the pny environment must be active. This section
describes the general mechanisms of hemypoperates on a node and how it interacts with
the user-level code.

3.1. pny-enabledccam-Tt Programs

The pony environment mainly consists of ascam-ttlibrary incorporating pny’s function-
ality. In order to achieve full semantic transparency, hasvea small amount of supportive
code had to be integrated directly into the ®&Rcompiler. The compiler support foopy in-
troduces a minor overhead to the handling of channel-typesdam-1t programs. Although
the additional cost is reasonably small, we waetam-Ttprogrammers to be able to choose
whether or not to introduce this overhead to their progrdfosthis, a new build-time option
has been added to KiK.

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 83

If KRoC is built with the ~-with-pony’ option, the compiler support forgmy is en-
abled foroccam-mtprograms compiled with this K&C build; otherwise traditionalccam-1t
programs are compiled. In the following, we will referaocam-1t programs that are com-
piled by a ~-with-pony’ KR0oC build aspony-enabled programs

Currently, pny-enabled programs and traditiomacam-1t programs are incompatible
as far as the handling of channel-types is concerned. Ftanos, a library compiled by a
traditional KRoC build could not be used by apy-enabled program, unless the library uses
no channel-types. This is no major drawback at the momeamtesany traditionabccam-1t
program (or library) can be re-compiled by any-enabled KRC build without changing its
functionality. Only the pny support for handling channel-types, with the small extat,
would be introduced.

In the future, it would be desirable to makeny-enabled and traditional K& builds
more compatible. A possible approach is outlined in [8].

3.2. The pny Library

In order to make the gny environment available on a node, the node must use dhg p
library. This is done in the usualkccam-ttway by adding the following compiler directives
to the source code:

#INCLUDE "ponylib.inc"
#USE "pony.lib"

When the program is being compiled, the following linker ops:
-lpony -lcif -lcourse -lsock -1file -lproc

must be given to KBC in order to link the program with theopy library as well as with
all libraries that the pny library itself use$.pony uses the C Interface (CIF) library [23] for
its protocol-converters, and KI’s course, socket, file and process libraries [24] for cgllin
various routines that are needed for its functionality.

3.3. Public pny Processes and Handles

There is a runtime system which handles the internal funstiof pony, called thepony
kernel The user-level code of a node interacts with tbheykernel through a set of public
pony processes. The number of public processes has been kbptriecessary minimum in
order to make the usage obpy as simple and intuitive as possible.

There are public processes for starting tlb@ypkernel, allocating ends of NCTs, shut-
ting down the pny environment, as well as for error- and message-handlimgr-handling
is used for the detection of networking errors iong; message-handling is used for out-
putting status and error messages. In order to preventdpisrgrom getting too large, error-
and message-handling will not be discussed here, sinceatteepot part of pny’s basic
functionality. Details aboutgny’s error- and message-handling are given in [8].

The startup process will return a given sethaindles A handle is the client-end of a
channel-typé which is used by the user-level code to interact with tbeypkernel. This
is done by calling the relevant public process and passiagctiiresponding handle as a
parameter.

6]t is planned to enable K&C to recognise the linker options automatically so that thewld not have to be
given as parameters anymore; this has not been implemeetghaioyvever.

’Please note that in this paper, the term ‘handle’ may refeeeto the channel-type as such, or to its client-
end. Typically, it is clear from the context which of them igamt; in case of doubt, we will refer to ‘the handle
channel-type’ or to ‘the client-end of the handle’ speclifica he server-end will always be explicitly referred
to as ‘the server-end of the handle’.

84 M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment

Handles returned by the startup process may be shared istreguested by the user-
level code. The user-level code may pass a shared handledmkef its sub-processes,
which then need to claim the handle before they can use itting a public pny process.
This conforms with the general rules for shared channed-gmpds, which makes sense since
the handlesire normaloccam-1t channel-type-ends.

Apart from the tasks covered by the public processes, atation between the user-
level code of a node and th@py kernel running on that node iiplicit. This includes the
communication via NCTs between processes on different noldeslaiming and releasing
of shared NCT-ends, as well as the movement of NCT-ends betwgebss of an application.
All these things are done by the user-level code in exactystme way as in a traditional
(non-networkedpccam-ttapplication, which gives us semantic transparency.

By design rule, handles are not allowed to leave their nodat iEhthey may not be sent
to other nodes over NCTSs, since this would result in undefirgzhbiour.

4. The Startup Mechanism

The pny environment is started on a node by calling oneafyss startup processesf the
startup process completes successfully, it forks off theypkernel and returns the handles
that are needed to call the other publany processes.

4.1. Different Versions of the Startup Process

There are several startup processes with different narapending on the needs of the node.
The name of the startup process specifies which handlesupmosed to return. The follow-
ing signatur& describes the naming of the startup processes:

pony.startup. (uls)nh[. (uls)eh[.iep]] [.mh]

If the name of the startup process containsh’, an unshareaetwork-handlas returned. If

it contains snh’, the startup process returns a shared network-handle n&tveork-handle
can then be used for callingpy’s allocation and shutdown processes; these are dedanbe
Sections 6 and 7. The other parts of the name of the startuegsa@re optional and used for
error- and message-handling, for which the startup prostesns arerror-handleand/or a
message-handiérequired.

4.2. Parameters of the Startup Processes

The different startup processes have different parametepending on which handles they
are supposed to return. The following parameter list is @1 of all possible parameters:

(VAL INT msg.type, net.type,

VAL []BYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT [SHARED] PONY.NETHANDLE! net.handle,
RESULT [SHARED] PONY.ERRHANDLE! err.handle,
RESULT INT err.point,

RESULT PONY.MSGHANDLE! msg.handle,

RESULT INT result)

The order of the parameters is the same for all startup psese®epending on the name of
the startup process, certain parameters may be unusedydrowWSHARED]' means that it
depends on the startup process whether the parame$ABED’ or not.

81[...1’ means optional, I’ is a choice, (. . .)"is for grouping.

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 85

The following parameters are common to all startup prosesse

e ‘net.type’ is the network-type. At the moment, the only supported rekatype is
TCPI/IP.

e ‘ans.name’ is the name of the ANS. The ANS-name determines which ANSIs c
tacted by the node. Details about this are given in Sectian 8.

e ‘app.name’ is the name of the pny application to which the node belongs. Under
this name, the application is administrated by the ANS.

e ‘node.name’ is the name of the node. The node-name determines whichgeoafion
file is used by pny to resolve the network location of the node. Details avermin
Section 8.1.

e ‘node.type’is the type of the node, i.e. whether it is the master or asslav

e ‘result’is the result returned by the startup process upon congpielf the startup
process completes successfully, thesult’ parameter will return an OK, otherwise
it will return an error. Possible errors that can occur dyistartup are discussed in
detail in [8].

e If the startup process completes successfullyn' node.id’ returns the ID of the
node. Each node of an application is assigned a unique |IDéogaihy environment.
Please note that the knowledge of the own node-ID is not rkfiehe function of
the pony node; the node-ID is only returned for debugging purposes

e Finally, if the startup process completes successfulbt thandle’ will contain the
network-handle. It will be unshared or shared, dependingtuich startup process is
used.

The other parameters of the startup process are used for aneh message-handling. They
are only part of the parameter list of those startup prosagsbese names contain the relevant
options, see above.

4.3. Design Rules

There are certain design rules that must be followed in dalensure the correct function of
pony applications. As mentioned already, none of the handlaawed to be sent to another
node. Handles are relevant only to the node that has crdated t

As far as the startup ofgmy is concerned, the general design rule is that on each node,
the pny environment is only started once, i.e. that each node belgngs to one gny
application? The reason for this design rule is to avoid cases where NC3-thad belong
to one ny application are sent to a node that belongs to anottwey ppplication, which
would result in undefined behaviour.

As an exception to this general rulejstpossible to write pny-enabledccam-1t pro-
grams that act as a ‘bridge’ betweeony applications. Such a program would require extra
careful programming. It would need to start any environment separately for each appli-
cation, and use separate handles for the different apiginsatin such a ‘bridging node’ it
would be vital not to mix up NCTs of separate applications.tTisano NCT-ends of one
application may be sent to nodes of a different applicat&s.long as this is ensured, a
‘bridging node’ will function properly.

Another design rule concerns the general order of eventrdeyy pny, namely the
startup, the usage and the shutdownafy This will be examined in detail in Section 7.

Please recall that by ‘node’ we meanang-enabledccam-ttprogram, not a physical computer. The latter
may run many nodes at the same time.

86 M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment
5. Starting the ANS

As discussed in Section 2.3, the ANS may administrate mafifgreint applications. Each
node of a given application must know the network locatiothef ANS by which the ap-
plication is administrated. The ANS itself is a pre-comgitecam-1t program coming with
KRoC. Itis placed in thebin’ directory of the KRoC distribution; the same place where the
‘kroc’ command itself is located. The ANS for TCP/IP can be startedailing:

ponyanstcpip

provided that KRC's ‘bin’ directory is in the path of the current shell. The ANS can be
configured with its own configuration file; see Section 8.3details.

6. Allocating NCT-ends

The basic communication paradigm iony are network-channel-types, i.e. channel-types
whose ends may reside on more than one node. The procesaldfgshg a new NCT in a
pony application is calledllocation There are two ways of allocating NCTs. The first pos-
sibility is to allocate the ends of an NGXplicitly, using one of pny’s allocation processes.
The other possibility is to send an end of a previously nomvaeked channel-type to another
node. By doing this, the channel-type becomes networkedraursd @ new NCT is established
in the pny applicationmplicitly.

6.1. Explicit Allocation

NCT-ends are allocated explicitly by using a name that is wmifpr the NCT across the
entire pny application. This name is a string under which the masiderof the application
administrates the NCT. The several ends of an NCT can be albaat different nodes
using this uniqgue NCT-name. Please note that the NCT-namdrig@ which is passed as a
parameter to gny’s allocation processes. It it the variable name of the channel-type-end
that is allocated. The variable name may be different fded#ht ends of the NCT, and may
change over time (by assignment and communication) — ad fsuaccam-ttvariables.
There are four different allocation processes whose namesthe following signature:

pony.alloc. (uls) (cls)

If the name of the allocation process contauns,' it is the process for allocating an unshared
client-end of an NCT. The names of the allocation procesgeshfired client-ends, unshared
and shared server-ends contain’; ‘ us’ or ‘ ss’ accordingly. Please note that any end of an
NCT may be allocatedt any time There is no prerequisite (such as for instance in JCSP.net)
that a client-end may only be allocated when a server-enthéas allocated first, or similar
restrictions'® In pony, this characteristic has been ‘moved up’ to the appbeatével and
now applies to the slaves and to the master. That is, the nrasmie must be up and running
before slave nodes can connect to it (althoughypprovides a mechanism to start a slave
node before the master; it just waits in this case, see [8]d¢aiils).

The parameters of the allocation processes are essetiialsame; the only difference
is the channel-type-end that is to be allocated. This is #rarpeter list of the allocation
processes:

10In JCSP.net, this prerequisite would apply to writing-eads reading-ends of network-channels rather
than client-ends and server-ends of NCTs.

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 87

(PONY.NETHANDLE! net.handle,
VAL [IBYTE nct.name, VAL INT other.end.type,
RESULT <alloc-type> chan.type.end, RESULT INT result)

e ‘net.handle’is the network-handle.

e ‘nct.name’ is the name of the NCT to which the end belongs that is to becatt.
Under this name, the NCT is administrated by the master notteeaipplication.

e ‘other.end.type’ is the share-typeof the other end of the NCT, i.e. of the server-
end if a client-end is to be allocated and vice versa. Thiampater declares whether
the other end is meant to be unshared, shared, or whether wet d@ow or do not
care about the other end’s share-type. Any mismatches wathqusly allocated ends
of the NCT will cause the allocation process to return an eanat fail.

e ‘chan.type.end’ is the variable that is to be allocate&alloc-type>’ is a wild-
card for the type of the variable. It would bBOBILE.CHAN!’ for the ‘uc’ version,
‘SHARED MOBILE.CHAN!’ for the ‘sc’ version, MOBILE.CHAN?' for the ‘us’ version,
or ‘SHARED MOBILE.CHAN?’ for the ‘ss’ version!?

e ‘result’is the result returned by the allocation process. If theadtion is success-
ful, the ‘result’ parameter will return an OK, otherwise it will return an @rrPos-
sible errors are mismatches in the x2x-type of the NCT as detlduring previous
allocations of NCT-ends of the same NCT-name. A detailed dson of possible
errors is given in [8].

6.2. Usage of NCTs and Implicit Allocation

Once an NCT-end variable has been allocated, it may be usedrikother channel-type-end
variable. From the point of view of the user-level code, teage is semantically transparent.
This includes the possibility to send a channel-type-end@gh channel.

If the channel over which we want to send a channel-type-emaside an NCT whose
opposite end is on another node, the channel-type-end thaend will end up on that node
as well. There are two possibilities now — either the chaityya¢ to which the end that is to
be sent belongs is already networked, or not. The latter s the channel-type-end was
originally allocated on our node in the traditional way, étiter with its opposite end.

If the channel-type is not yet networked, it becomes netedrturing the send opera-
tion. This implicit allocation happens internally and igrisparent to the user-level code. The
pony environment becomes aware of the new NCT and will hendetoeat it just like an
explicitly allocated one. The only difference is that ingilly allocated NCTs have no NCT-
name, which means that no other ends of that NCT may be albbegicitly. This is not
necessary, however, since the NCT had originally been aédaa a client-end/server-end
pair anyway. If one or both of its ends are shared, the retesfsannel-type-end variable may
be multiplied by simply assigning it to another variable ending it over a channel — as
usual for channel-types.

The second possibility is that the channel-type-end thiat e sent belongs to an NCT
already, i.e. the gny environment is already aware of this NCT. This may apply dthb
explicitly and implicitly allocated NCTs. In this case, nagerimplicit allocation is done by
the pony environment before the end is sent to the target node.

When an end of an NCT arrives on a node where no end of that NCT leashetore
during the lifetime of the pny application, the NCT-end is established on the target hgde

11*MOBILE.CHAN' parameters have recently been addeddcam-1t, any channel-type-end that fits the spec-
ified client/server direction and share-type may be passeth argument.

88 M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment

the pony infrastructuré? Again, this may apply to both explicitly and implicitly aiated
NCTs.

In summary, apart from the actual explicit allocation itsttlere is no difference between
explicitly and implicitly allocated NCTs from the point ofexv of the user-level code. Any
operation that can be done with channel-types can be dohéyaih of them as well.

7. Shutting Down Nodes

At the end of a pny-enabled program, theopy environment must be shut down. This is
done by calling the pny shutdown process. The only parameter of the shutdowrepsos
the network-handle:

PROC pony.shutdown (PONY.NETHANDLE! net.handle)

By design rule, the gny shutdown process may only be called after all usage oforéed
(or possibly networked) channel-type-end variables hashad. ‘Usage’ here means:

e claiming/releasing the channel-type-end if it is shared
e using the channel-type-end for communication over its nb&n(either way)

The occam-1t programmer must make sure that none of the above is happenpayallel
with (or after) calling the shutdown process. Of course uber-level code may use channel-
types in parallel with or after callingpony . shutdown’, but the programmer must ensure that
none of these channel-types are networked. Typicallyncglpony . shutdown’ would be the
very last thing the node does, possibly except for taskte@ta error- and message-handling
— which do not involvenetworkedchannel-type-ends.

The shutdown process tells therny kernel to shut down, which includes shutting down
all its components. If our node is the master node of the eafin, the pny kernel also no-
tifies the ANS about the shutdown, which will then remove thgli@ation from its database.
This will prevent any further slave nodes from connectingh®master. On slave nodes, the
shutdown process finishes immediately after tbaypinfrastructure on that node has been
shut down. On the master node, theng kernel waits for all slaves to shut down before
shutting down itself.

8. Configuration

The configuration of thegny environment depends on the network-type that is useditApa
from the networking settings, no configuration is neededdayyp This section is concerned
with the configuration for TCP/IP (which is currently the orlypported network-type) on
Linux/x86 (which is currently the only platform on whiclopy runs).

Since a node must be able both to contact other nodes and tBaAd\do be contacted
by other nodes and the ANS, it is vital that the node can beacted via the same IP address/
port number from all computers involved in theny application (i.e. all computers that are
running nodes or the ANS). This includes the computer on vthie node itself is running.
Therefore topologies with Network Address Translationmsstn computers involved in the
application are not supported at the moment. Please natéf tath computers involved in
the application are located on a sub-network that uses NABtomunicate with the outside
world, the NAT has no impact on thepy application. Similarly, if there is only one com-

2Future research may enhanaeng’s performance by not establishing the entire infragtmeeneeded for
an NCT-end if the end is just ‘passing through’ a node and mesed for communication on the node itself.
Details are given in [8].

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 89

puter involved in the application (i.e. all nodes and the ANS8 running on the same com-
puter), the loopback IP address may be used to identify ttetitsn of nodes and the ANS;
in this case only the ports would be different.

pony’s network-specific components are configured using smpfdin-text configura-
tion files that contain the relevant settings. Settings mayimitted, in which case either
defaults are used or the correct setting is detected auiatiat There are three different
configuration files, which are discussed in the followingtiess.

8.1. The Node-file

During startup, a node-name must be supplied to the staragegs (cf. Section 4.2). This
name is used to determine the name of the configuration filéstbiaed to resolve the location
of the node on the network (thde-filg. In TCP/IP terms, ‘location’ means the IP address
and port number over which the node can be contacted by otltesror by the ANS. If the
node-name is an empty string, the name of the node-filepisny . tcpip.node’. Otherwise
itis‘.pony.tcpip.node.<node-name>’, where <node-name>’ is the name of the node.

The startup process will look for the node-file first in theegdbory from which the node is
started; if the node-file is not there, the startup proceidomk in the user's home directory.

If the node-file is found, the startup process will check tbdatfile for the IP address and
the port number under which the node can be contacted. TladdRess/ port number pair is
used as a unique identification for the node’s location acttos entire application.

If no node-file is found, or if one or more of the settings arssmg in the node-file,
the relevant settings will be determined automaticallyi®ystartup process. If no IP address
is found, the startup process will attempt to resolve theawéeoutgoing IP address of the
computer. If this is not possible, the startup process will ff no port number is found,gny
will automatically assign the first free port that is greaieequal to port 7500, the default
port number for pny nodes. With this mechanism, it is possible to run severaymodes on
the same physical computer and use the same node-name dbttredim. If the port number
is not specified in the corresponding node-filenp automatically chooses the next free one.

It is possible to run pny nodes on computers which get their IP address via DHCP, as
long as the current IP address can be resolved (which shouhdally be no problem). Since
the application does not know (and does not need to know)tabeulocation of a node until
the node effectively joins the application, computers wéhable IP addresses do not present
a problem.

8.2. The ANS-file

Similarly to the node-name, the name of the ANS must be givetné¢ pny startup pro-
cess. The ANS-name is used to determine the name oAlte-file which is used to find
out the location of the ANS. The name of the ANS-file is eithgsony.tcpip.ans’ or
‘.pony.tcpip.ans.<ans-name>’, depending on whether the ANS-name is an empty string
or not — this naming scheme is the same as for the node-file.

Again, the startup process will look for the ANS-file first imet current directory and
then in the user’'s home directory. If the ANS-file is foundk #gtartup process will check the
ANS-file for the location (hostname or IP address, and pamilmer) of the ANS.

If no ANS-file is found, or if one or more of the settings are simg) in the ANS-file, the
startup process will use default settings instead. If ndrfamse is found, the startup process
will use the loopback IP address to try to contact the ANS —cWwhwill fail if the ANS is
not running on the same computer as the node itself. If normpartber is found, port 7400
will be used as the default port number for the ANS.

The location of the ANS must be known by all nodes in order t@ablke to start the
pony application. Therefore, running the ANS on a computengi®)HCP is not advisable.

90 M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment

An exception might be static DHCP configurations where themgsr running the ANS is
always assigned the same hostname/ IP address by the DH@P. serv

8.3. The ANS-configuration-file

The last file is theANS-configuration-filewhich is used by the ANS to find out its own port
numbert® The name of the ANS-configuration-file ispony.tcpip.ans-conf’.

Again, the file is searched for in the current and in the homecthry. If the file is found,
the ANS looks for the port number under which it is supposelisten for connections. If
the file or the setting are not found, the default ANS port @0 # used.

9. A Sample Application

This section presents a sampleng application in order to enable a better understanding of
what has been discussed so far. This sample applicatiorunpsgely been kept simple. The
idea is to draw the attention of the reader to the interplajefdifferent aspects of theopy
environment, rather than presenting a very realistic buegassarily complex application.
Therefore, parts of the code that are not directly relatgobtyy are usually foldett in the
sample algorithms.

The sample application consists of three types of nodes.nTdster node is aroker
that establishes connections betwagmkernodes andustomenodes. The workers provide
some service for the customers. Both workers and customersecbto the broker via an
explicitly allocated NCT, théoroker-handle When a worker becomes ready, it passes the
client-end of a channel-type (thveorker-handl¢ to the broker; the worker itself holds the
server-end of the worker-handle. When the client-end of theker-handle is sent to the
broker for the first time, it becomes implicitly networked.

The broker keeps the client-ends of the worker-handles mtabése. When a customer
needs the service of a worker, it notifies the broker, whigmtpasses a worker-handle from
its database to the customer if there is one available. Te®er and the worker can now
communicate over the worker-handle about the service nelkgéhe customer. When the
transaction between the customer and the worker is finighedzustomer sends the client-
end of the worker-handle back to the worker over the worlarehte itself. The worker can
then re-register with the broker.

Algorithm 1 shows the declarations of the handles and théopots that are carried
by the channels inside the handles. These declarationsiar include file that will be
included by the three nodes. Algorithms 2 through 4 showrti@de@mentation of the broker,
worker and customer nodes. For the sake of simplicity, tb&darand the worker are running
infinitely. Only the customer node terminates.

Figure 2 shows a possible layout of the sample applicatiorcethe topology of the
application changes dynamically, the figure can only be agshot’ of a given point in time.
There are seven nodes altogether, namely the broker, tluders and three customefsAll
workers and customers are connected to the broker via thkebhandle. Customer 1 cur-
rently holds the worker-handle connecting to worker 1; tteepcustomers have not acquired
a worker-handle yet. Worker 2 may have just started and nateggstered with the broker,

13The ANS does not need to know its own IP address, since it matiies any nodes about it at runtime —
nodes find the ANS via the ANS-file.

Lines starting with © . .” denote parts of the code that have been folded. This notétiased by origami
and other folding editors.

5For the sake of simplicity, nodes and processes are degstacsingle box, because in this sample appli-
cation, on each node there is only the main process. Gepeatalimportant to distinguish between nodes and
processes, since many processes may run on the same node.

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 91

or just finished the service for a customer but not yet resteged with the broker. There-
fore, worker 2 currently holds the client-end of its workexndle itself. Finally, worker 3 is
currently registered with the broker, which holds the ratewvorker-handle.

-- Filename: ‘decls.inc’

—-- Forward declaration
CHAN TYPE WORKERHANDLE:

-- To broker
PROTOCOL BROKERHANDLE.TO.BROKER
CASE
-- Register worker
reg.worker; WORKERHANDLE!
-- Get worker
get.worker

—-- From broker
PROTOCOL BROKERHANDLE.FROM.BROKER
CASE
-— No worker available
no.worker.available
—- Return worker-handle
get.worker.confirm; WORKERHANDLE!

-— Broker-handle
CHAN TYPE BROKERHANDLE
MOBILE RECORD
CHAN BROKERHANDLE.TO.BROKER to.broker?:
CHAN BROKERHANDLE.FROM.BROKER from.broker!:

-- To worker
PROTOCOL WORKERHANDLE.TO.WORKER
CASE
Stuff dealing with the service provided by the worker
—-— Finish transaction and return worker-handle
finish; WORKERHANDLE!

-— From worker
PROTOCOL WORKERHANDLE.FROM.WORKER
CASE
Stuff dealing with the service provided by the worker

—- Worker-handle
CHAN TYPE WORKERHANDLE
MOBILE RECORD
CHAN WORKERHANDLE.TO.WORKER to.worker?:
CHAN WORKERHANDLE.FROM.WORKER from.worker!:

Algorithm 1. Sample application: Declarations

92 M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment

#INCLUDE "decls.inc"
#INCLUDE "ponylib.inc"
#USE "pony.lib"

PROC broker (CHAN BYTE key?, scr!, err!)
INT own.node.id, result:
PONY.NETHANDLE! net.handle:
BROKERHANDLE? broker.handle.svr:
SEQ
-- Start pony
pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "sample-app",
""_ PONYC.NODETYPE.MASTER,
own.node.id, net.handle, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
-— Allocate server-end of broker-handle
pony.alloc.us (net.handle, "broker-handle", PONYC.SHARETYPE.SHARED,
broker.handle.svr, result)
ASSERT (result = PONYC.RESULT.ALLOC.OK)
-- Start infinite loop (therefore no shutdown of pony kernel later)
WHILE TRUE
-- Listen to requests from broker-handle
broker.handle.svr[to.broker] ? CASE
-- Register worker
WORKERHANDLE! worker.handle:
reg.worker; worker.handle
Store ‘worker.handle’ in database
-- Get worker
get.worker

IF

Worker available

WORKERHANDLE! worker.handle:

SEQ

. Retrieve ‘worker.handle’ from database
broker.handle.svr[from.broker] ! get.worker.confirm;
worker.handle
TRUE

broker.handle.svr[from.broker] ! no.worker.available

Algorithm 2. Sample application: The broker

10. Implementation Overview
10.1. NCTs and CTBs

There are two important terms related tny which are vital not to get confused: network-
channel-types and channel-type-blocks. As already defaneetwork-channel-type (NCT) is
a channel-type that may connect several nodes. An NCTogieal construct that comprises
a networked channel-type across the entoeypapplication. Each NCT has a unique ID, and
a unique name if it was allocated explicitly, across the igppibn.

A channel-type-block (CTB¥ the memory block of a channel-type on an individual
node. This memory structure holds all information that ieded for the function of the
channel-type. CTBs are located in the dynamic mobilespadeeondde. All channel-type-
end variables belonging to a certain channel-type are @airtb that channel-types’s CTB.
Details about the layout of a CTB can be found in [15].

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 93

#INCLUDE "decls.inc"
#INCLUDE "ponylib.inc"
#USE "pony.lib"

PROC worker (CHAN BYTE key?, scr!, err!)
INT own.node.id, result:
PONY.NETHANDLE! net.handle:
SHARED BROKERHANDLE! broker.handle:
WORKERHANDLE! worker.handle:
WORKERHANDLE? worker.handle.svr:
SEQ
-- Start pony
pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "sample-app",
"", PONYC.NODETYPE.SLAVE,
own.node.id, net.handle, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
—— Allocate shared client-end of broker-handle
pony.alloc.sc (net.handle, "broker-handle", PONYC.SHARETYPE.UNKNOWN,
broker.handle, result)
ASSERT (result = PONYC.RESULT.ALLOC.OK)
—-- Allocate worker-handle
worker.handle, worker.handle.svr := MOBILE WORKERHANDLE
-- Start infinite loop (therefore no shutdown of pony kernel later)
WHILE TRUE
SEQ
-- Register with broker
CLAIM broker.handle
broker.handle[to.broker] ! reg.worker; worker.handle
-- Inner loop
INITIAL BOOL running IS TRUE:
WHILE running
-- Listen to requests from worker-handle
worker .handle.svr[to.worker] 7 CASE
Stuff dealing with the service provided by the worker
Deal with it
-- Finish transaction and get worker-handle back
finish; worker.handle
-— Exit inmner loop
running := FALSE

Algorithm 3. Sample application: The worker

In the pny environment, we distinguish betweran-networkedndnetworkedCTBs.
A traditional (intra-processor) channel-type is made upxaictly one, non-networked, CTB.
An NCT is made up of several, networked, CTBs, namely one CTB oh rade where
there are (or have been) ends of that NCT. The CTBs of an NCT areameected by the
pony infrastructure. Non-networked CTBs can become networkechplicit allocation, cf.
Section 6.2.

In pony-enabled programs, the memory layout of CTBs is slightlgdathan in tradi-
tionaloccam-ttprograms. This is necessary in order to accommodate the oéadtworked
CTBs (as well as of non-networked CTBs that may become netwarkedjliscussed in
Section 3.1, the @gny-specific compiler support, which includes the modified Gagut, is
enabled in KRC if it is built with the ‘~-with-pony’ option. The pny-specific CTB layout,
as well as the compiler support foopy, are explained in detail in [8].

94 M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment

#INCLUDE "decls.inc"
#INCLUDE "ponylib.inc"
#USE "pony.lib"

PROC customer (CHAN BYTE key?, scr!, err!)
INT own.node.id, result:
PONY.NETHANDLE! net.handle:
SHARED BROKERHANDLE! broker.handle:
SEQ
-- Start pony
pony.startup.unh (PONYC.NETTYPE.TCPIP, "", "sample-app",
""_ PONYC.NODETYPE.SLAVE,
own.node.id, net.handle, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
-— Allocate shared client-end of broker-handle
pony.alloc.sc (net.handle, "broker-handle", PONYC.SHARETYPE.UNKNOWN,
broker.handle, result)
IF
result <> PONYC.RESULT.ALLOC.OK
Deal with allocation error
TRUE
BOOL worker.available:
WORKERHANDLE! worker.handle:
SEQ
—-— Get worker-handle from broker
CLAIM broker.handle
SEQ
broker.handle[to.broker] ! get.worker
broker.handle [from.broker] 7 CASE
no.worker.available
worker.available := FALSE
get.worker.confirm; worker.handle
worker.available := TRUE
IF
worker.available
SEQ
Communicate over worker-handle regarding service
—-— Finish transaction and return worker-handle
worker .handle[to.worker] ! finish; worker.handle
TRUE
Deal with absence of workers
—-— Shut down pony kernel
pony.shutdown (net.handle)

Algorithm 4. Sample application: The customer

10.2. Structure of pny

Apart from the compiler support forgmy-enabled CTBs,qny is implemented entirely as an
occam-tt library. Most parts of this library were implementedancam-1t. Some auxiliary
functions were implemented in C. The protocol-convertege (slow) were implemented as
CIF [23] processes. Figure 3 shows the layout of the theypenvironment with its various

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 95

worker 1 — — worker 2 — worker 3
(NN} Ll Ll
-l — -
o) [a) (a)
= = =
< < <
T T T
[a's o (o'
i w (NN}
>z I~ I~z
[a's (o' occ
(@] O (@]
= = =
BROKERHANDLE broker
customer 1 — — customer 2 customer 3

Figure 2. Sample application: Possible dynamic layout

components and the external and internal hafBllesed for communication between the
individual components.

The figure assumes that the network-handle and the erralldhare unshared, the node
is the master, and the network-type is TCP/IP. Please notertttader to keep the figure
uncluttered, each component is just depicted once, evéemiy occur several times within
the pony environment. Unshared client-ends of internal handieshald by the process in
which the end is located in the figutéShared client-ends of internal handles may be held
by several component processes at the same time. If sucldaxtmds into another process
(the instant-handler in the CTB-handler or one of the managihis means that the relevant
process holds the end and will pass it to other componentsaurest.

The communication between the individual components ofpthey environment fol-
lows the principle of cycle-free client/server communigatas set out in [25]. Although the
communication structure between the individual companhemy change dynamically, it is
guaranteed that at any given time, the client/server digrapycle-free; the communication
is therefore deadlock-free.

16Both the external and the internal handles are channebtype
1This applies to the internal decode- and encode-handlessevtiient-ends are held by the relevant CTB-
handler.

96 M. Schweigler and A.T. Sampsonony — Theoccam-1t Network Environment

decode- CTB-instant-
reply-handle handle

protocol-| | decode- decode- internal
decoder handle handler decode-handle
CTB-main-
handle
protocol-| | encode- encode- internal
encoder handle handler encode-handle
CTB-claim-
network-hook- e
handle CTB-claim-
handle

CTB-manager-handle

CTB-manager

NCT-handler NCT-handle

NCT-manager-handle NCT-manager

TCP/IP .
@ link-handler link-handle
link-manager-handle

TCP/IP TCP/IP
link-manager-handle link-manager

internal internal
message-handle error-handle

message kernel-
i ly-handl :
handler reply-handle error-handler

error-handle

message- —>— output

message-handle
outputter —>— error

network-
handle

Figure 3. Layout of the pny environment

10.3. Internal Components

This section briefly introduces the individual componerftshe pony environment. A de-
tailed description of their functionality, which includdse usage of the internal handles for
communication between the components, is given in [8].

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 97

The Protocol-converters

The purpose of th@rotocol-converterss to enable the gny environment to support net-
worked channels carrying all commorcam-Tt protocols. For each networked channel (i.e.
for each channel in a networked CTB), there is one set of prétmmuverters, consisting of
aprotocol-decodeand aprotocol-encoder

On the sending node, the decoder decodes the incoming platée a special protocol
that is used internally by theopy kernel. After something has been sent from one node to
another via the pny environment, the encoder on the receiving node takesitaamediary
pony protocol and encodes it back into the user-level protbedbre passing it on to the
receiving user-level process.

Decode-handler and Encode-handler

The decode-handletakes the data from the decoder and packs it into a suitahieatofor
sending it over the network. On the receiving node, éneode-handletakes the packed
data coming from the network, unpacks it, and passes it dmet@thcoder. Additionally, the
decode-handler and the encode-handler deal with the iatjgits arising from the move-
ment of NCT-ends over networked channels and the impliaication of NCT-ends where
applicable.

The CTB-handler

The CTB-handlerdeals with the function of a networked CTB. There is a CTB-hanidler
each networked CTB on the node. The CTB-handler handles ingpot@m and release
requests for the ends of the CTB, as well as the communicatangats channels. Please
note that the instant-handler, the client-listener andséwer-listener in the CTB-handler
(cf. Figure 3) are no actual components ohyg but just simple sub-processes of the CTB-
handler.

The CTB-manager

The CTB-manageis responsible for starting new CTB-handlers when neededn@ ex-
plicit allocation and when making a previously non-netvemtiCTB networked). It also keeps
the various internal handles for existing CTB-handlers arss@sthem to otheropy com-
ponents on request (via ti&r B-manager-hand)e

The NCT-handler

NCT-handlersonly exist on master nodes. There is one NCT-handler for edCh N the
application. The NCT-handler is responsible for handliregroland release requests coming
from the CTB-handlers on the various nodes of the applicalibis involves queueing claim
requests (if several nodes try to claim the same NCT-end)thel get served.

The NCT-manager

The NCT-manageresides on the master node and starts new NCT-handlers wieelede
This is the case when the first end of an NCT is allocated exXlglicr when a previously
non-networked CTB is made networked on a node and a new NCT nedusallocated
implicitly. The NCT-manager keeps tidCT-handledor existing NCT-handlers and passes
them (via theNCT-manager-hand)eo requesting link-handlet®

BNo other components will ever request an NCT-handle.

98 M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment

The link-handler

Link-handlershandle network links between two nodes of a pony applicattomeach node,
there is a link-handler for each link that has been estadddisio another node. The link-
handler takes messages frowng’s various components and passes them on to the remote
node via the link. When the link-handler on the receiving nges a network-message over
its link, it passes it on to the component for which the messagntended.

The link-manager

The link-managerestablishes new links (and starts new link-handlers) wlesressary. For
TCP/IP, this means that new socket connections to other revdesstablished or incoming
socket connections from other nodes are accepted. Therlarkager keeps tHmk-handles
for existing link-handlers and passes them (vialihke-manager-handlgeto requesting pny
components.

All messages exchanged between two nodes are multiple>erdio link between the
nodes. This applies especially to messages sent over rkettvohannels. The multiplexing
of possibly many networked channels over a single link wapined by the Virtual Channel
Processor of the T9000 transputer [10], although the rgutinpony is dynamic because
NCT-ends may move to other nodesng’s routing is a dynamic version of the ‘crossbar’
routing found in JCSP.net [21].

Error-handler and Message-handler

The error-handler and the message-handler are used for @ane message-handling. They
are only active if this has been requested from the startogpass when the node was started.

10.4. Modular Design ofgny

The structure of thegny environment is modular, which makes it easy to replacexmrants
when needed. The most obvious application for this featuraldvbe adding support for
new network-types togny. This could easily be done by adding new network drivers (a
link-handler and a link-manager), as well as a new ANS, fer ew network-type. The
other pny components would not need to be modified and could comratenwith the new
network drivers via the existing interface (the internahdiies). During startup, the correct
link-manager is started by th@py environment, depending on the network-type used.

11. Benchmarks

These benchmarks were conducted on the TUNA [26] clustbedthiversity of Kent, which
consists of 30 PCs with 3.2 GHz Intel Pentium IV processonshing Linux 2.6.8, linked
by a reliable switched gigabit Ethernet network. The magbivere otherwise idle; memory
usage was watched carefully to avoid going into swap. Thetlreark programs — which
are included in the KBC distribution — were compiled using Ki's highest optimisation
options, as was theomy library. Each pny node was run on a dedicated host; the ANS was
also given a dedicated host (for ease of management; the &AN& performance-critical).

All the benchmarks aim to be ‘steady-state’ measuremenésidops are started and
allowed to run for at least two seconds before the timer igestain order to avoid CPU
caching effects; the performance of the loop is then medsawer a period of ten seconds.
Each such measurement was repeated three times and the itieanesults taken. We have
omitted error bars for clarity; the error was within 1% onla@hchmarks.

We emphasise that, to date, very little ‘tuning’ work hasrbéene on pny; these results
should only improve with time. That said, the present rassaie extremely encouraging, and

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 99

we have already built several distributed applicationagigony which perform well on PC
clusters.

11.1. Communication Time

‘commstime’ is a standard benchmark that has traditionally been us#ddwarious incarna-
tions ofoccam and similar CSP-based platforms. Its process layout is shoWwigure 4.

consume

prefix (0)

Figure 4. The ‘commstime’ benchmark

The ‘commstime’ benchmark consists of four parallel processes, three aftwdre run-
ning in a loop. The processes are connected by channelsSrgaTs. The prefix’ pro-
cess first outputs a pre-defined number. Then it inputs inc@INTSs and passes them on.
The ‘delta’ process inputdNTs and passes them on via two output channels. $hec’
process inputgNTs and outputs their successors. Finally, thensume’ process inputs the
INTs from the above circuit and acts as a monitoring process.

Since the processes are effectively only doing commumicatithe cycle rate of the
network (i.e. how long it takes for a piece of data to travelusad the loop) can be used to
estimate the overhead of a single communication. For caioreal occam-Tt programs, the
communication time is the context-switch time of the ®Rschedulet?

The pony version of the ¢éommstime’ benchmark modifies the standard program so that
each of the four processes runs on a separate node. The Ehbetvecen processes become
NCTs containing a singl&NT channel. Thus, the communication time measured is the time
for a basicnetworkcommunication — which includes not just seveoalcam-1t context-
switches, but also eight pthreads context-switches, fgstiesn calls into the kernel, and two
TCP round-trips across the network.

The standardcommstime’ was compiled using the same KR version and options as
the other benchmarks, and reported a communication tim@ n$ vith CPU usage at 100%.
The pny ‘commstime’ reported a communication time of & with CPU usage on each
node at 3% — approximately fifteen thousand communicatiens@cond.

11.2. Throughput

The ‘bmthroughput’ program is intended to measure the aggregate data ratalaiesacross

a group of networked channels. A collection of worker preess— distributed across a
number of slave nodes — sen®®BILE []BYTE’ arrays to a master process (on the master
node); the master measures the rate at which it is receidtagfcom the collection of work-
ers. The number of slave nodes, number of workers per slade, mange of message sizes
(fixed or randomly distributed) and transmission rate (irssages per second, or simply ‘as
fast as possible’) can be varied. In this set of benchmahlescbde generating messages is
trivial, and there are no oth@ccam-1t processes running to compete witbny for CPU
time.

9There is also a ‘parallel delta’ version of the original blemark which is used to measure process startup
time; the benchmark used here is the ‘sequential deltaloreia which no processes are created or destroyed
while the benchmark is running.

100 M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment

Using 100 KB° — a message size typical for applications rendering read-tijraph-
ics — the saturation point of the network can be reached welftively few sending pro-
cesses. Figure 5 shows the throughput available with ong $te®e nodes, each running two
workers; network saturation is just reached at 25 slave :1Gde 50 workers).

100

80

60 -

Throughput [MB/s]

40 + -

20 -

Slave nodes

Figure 5. Throughput: 100 KB messages, two workers per slave

Figure 6 shows the throughput available from one slave nadaing 50 workers as
the message size is varied between 1 B and 1 MB. Sioog (ike occam-tt internally)
does approximately the same amount of work per communitaéigardless of the size of
the message, there is an obvious advantage in using largeages if your application is
optimised for throughput.

Figure 7 shows the throughput available from one slave nsdgb0 KB messages as
the number of workers is varied between 1 and 5@0ypises blocking system calls, so other
occam-Tt processes can execute whileny is waiting for network operations to complete;
throughput-sensitive applications should therefore uskiphe processes per node, or have
internal buffering, to ensure that the networked channelays have data available to send.

11.3. Network Overhead

In the previous benchmark, the master process’s throughpasurement only includes the
data actually being sent by the application (that is, MGBILE [1BYTE arrays); the net-
work overhead due to theopy and TCP/IP protocols is not included. It can be estimated by
comparing the measurement with the network data rate mgbost the operating system.

The rightmost data point in figure 5 is 99.1 MB/s; the networligesmeasured at the
same point was 104.9 MB/s. The network overhead was thus @ppately 5.8%, or 5.8 KB
for every 100 KB array of data. Since each 1.5 KB Ethernet &arfl contain approximately
60 B of Ethernet, IP and TCP headers, the network overheadecaplib up into some 4%
which are due to the network protocols in use, and 1.8% dueny jiself.

20All byte prefixes used in this paper are decimal, e.g. 1 KB =01B0

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 101

100 T L T L T L T L T L
80 b
2 60t .
=)
5
Q.
<
(=2
=1
8
= 40 E
20 - —
0 1 1 1 1 1
1 10 100 1000 10000 100000 1e+06
Message size [B]
Figure 6. Throughput: Varying message size, one slave with 50 workers
100 T T
80 - b
2 60 .
=)
5 I
Q
<
[=2]
=1
]
£ 40 -
20 b
0 L 1
1 10 100 1000

Workers

Figure 7. Throughput: 50 KB messages, one slave, varying number déever

11.4. CPU Overhead

The computational overhead introduced by tlh@yenvironment can be evaluated by mea-
suring the CPU time peauser-level communicatiofULC). A ULC is the entire communi-
cation carried by amccam-tt channel, i.e. everything noted after the or the *?’. So, for
instance:

c ! x;vy; z

102 M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment

would be one ULC. The CPU time per ULC is the time between statinsend a ULC

via a networked channel and receiving the acknowledgenhantthe entire ULC has been
received by the remote user-level process, specificalljudik the network latency from
this measurement. The time measured reflects the CPU oveshdhd sending node.

The bmpingpongtime’ benchmark measures the time needed by the ULC, in form of
the special protocol created by the protocol-decoder,awetrthrough the decoder into the
pony kernel, and then all the way through theny kernel until the point where it would have
to be outputted to the network. At this point, nothing is seenthe network, but a dummy
acknowledgement is sent to the CTB-handler as if an acknowtledgt from the remote
pony kernel had just been received from the network. Pleasethat, depending on the user-
level protocol, the measurement for a ULC may include onevorguch ping-pong times.
Details can be found in [8]. After the last acknowledgemeas heen returned, the sending
operation finishes as usual, with the decoder assuminghitbaetmote node has received the
data, and therefore releasing the user-level channel.

‘bmpingpongtime’ sends regular byte arrays in order to exclude any dynaminong
allocation (for instance ofMOBILE []1BYTE' arrays) from the figures. Figure 8 shows the
CPU time per ULC for single byte arrays of varying size. As etpd, the CPU time is fairly
constant. This is so because thenp infrastructure does not copy the user-level data, but
only passes around its address and size.

10 T T T T T T T T T T T T T T T

CPU time per user-level communication [ps]

o .y ey ey v s
1 10 100 1000 10000 100000 1e+06

Array size [B]

Figure 8. CPU overhead: Single byte array of varying size

An interesting phenomenon is that sending one byte of reglal is slower than send-
ing 10 or 1000. An analysis of the bytecode generated by timgpider shows that KBRC uses
the ‘OUT8’ instruction for the single byte andUT’ for the rest, so presumably those have
different performance characteristics.

Another test measures the CPU time per ULC for sequentiabpotg with a varying
number of items. In each sequential protocol, all items agellar byte arrays of the same
size; we have carried out measurements for array sizes of KB,dnd 1 MB.

Figure 9 shows the CPU time per ULC for sequential protocols Bfarrays. The jump
between the results for one and two items is rather big, Isecaaquential protocols with
two or more items require two ping-pongs, whereas non-se@elata (i.e. one item) only

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 103

requires a single ping-pong. The CPU time per ULC then grdyliradreases due to the fact
that the individual items of the sequential protocol, exdép first and the last, are copied
internally by the decoder, and then the address/size ptieabpyis passed on; the copying
takes more time the more items there are in the protocol. ®pgieg is necessary because of
the way the KRC compiler evaluates expressions in non-mobile varialdesé each item
of the sequential protocol may have been an evaluated estpngsso that all items from the
second item onwards can be sent over the network at once}siee {letails.

25 T T T T T T T T

CPU time per user-level communication [ps]

0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Number of protocol items (1 B arrays)

Figure 9. CPU overhead: Sequential protocol, 1 B arrays

As mentioned above, there are always two ping-pongs foresggu protocols with two
or more items. Hence, only the copying of protocol items eaubke gradual increase, with
(n - 2) copy operations for protocols with n items.

Figure 10 shows the CPU time per ULC for sequential protocibls® 1 KB and 1 MB
arrays. For sequential protocols with one and two itemsQR& time per ULC is nearly
identical for all three array sizes, since no copying is imed. As expected, from three items
onwards, the results diverge, because the aggregate awiodata that needs to be copied
depends on the length of the protocol and the size of theiohai arrays.

Particularly notable is the big jump between two and thremg for the 1 MB arrays.
This shows the impact of copying large amounts of data — aactlvantage of not having
to copy non-sequential regular data or mobile data, whidhbeithe bulk of communication
in a typical pny application.

Nevertheless, network latency always outweighs local capyl herefore, copying items
of a sequential protocol locally and then sending them imglsinetwork operation is still
better than not copying them and sending each item over thneseparately.

11.5. Application Scalability

‘mandelbauer’ is an example of usinggny to make an existing application distributed; in
this case, the original program computes a region of the diénot set. The approach taken
is ‘farming’: the master node generates work requests fangular sections of the region
being computed; a number of slave nodes read the requedtss dppropriate computation

104 M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment

10000

CPU time per user-level communication [us]

1000

100

T T
1Barrays —+—
1KBarrays —>—
1 MB arrays —*—

5 6
Number of protocol items

Figure 10. CPU overhead: Sequential protocol, several array sizes

10

and send the results back to the master; the master thentsaied displays the results. For
the purposes of this benchmark, the display has been dikabk master just measures the
rate at which pixels are being computed.

The ‘mandelbauer’ application can be run in two modes. In shared mode (see Fig-
ure 11), there is a single pair of shared networked reqessgidinse channels (in two sepa-
rate NCTs) used by all the slaves. In multiplexing mode (seer€i 12), each slave has its
own pair of networked request/response channels (in aessM@IT), connected to a handler
process on the master node. When a slave is started up, it enderver-end of its re-
quest/response NCT to the master, which will then set up a a@&dlar process. The master
uses local shared channels to distribute work to and caldscits from the handler processes.
The slaves have small internal buffers to hold incoming amdgaing messages.

master

response

Figure 11. The ‘mandelbauer’ application: Shared mode

slave

slave

slave

Figure 13 shows the rendering performancemahdelbauer’ in both modes. Network
saturation is reached at 25 slaves in multiplexing mode hatiwpoint CPU utilisation on the
slaves in multiplexing mode is approximately 85%; in sharexdle it is approximately 30%.

The scaling performance in multiplexing mode is signifibafetter than in shared
mode. Since shared NCT-ends must be explicitly claimed dvenéetwork, in shared mode

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 105

handler request/response slave

handler request/response slave

handler request/response slave
master

Figure 12. The ‘mandelbauer’ application: Multiplexing mode

3500

T
Ideal performance

Multiplexing mode —+—
Shared mode —x—

3000

2500

2000

1500

Computation rate [Kpixel/s]

1000

500

5 10 15 20 25
Slave nodes

Figure 13. Scalability of a distributed application

the master is frequently blocked waiting for one of the woske claim the request channel.
Future research will have to look into ways to improve the na@ism for claiming NCT-ends
— which would narrow the gap between shared mode and mudiigenode.

Itis usually considered good practice to run network-boprtesses at a higher priority
than compute-bound processes, in order to reduce latencefwork responses. However,
we tried both with and without explicit priorities in this jigcation, and there was no mea-
surable difference — perhaps because, as there is only ¢émdaten process running at a
time on each slave node, theny processes will never be blocked for longer than the time it
takes to process one work request.

106 M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment

12. Conclusions and Future Work

The pony project has succeeded in developing a unified model fer-iaind intra-processor
concurrency. pny has become a robust and scalable platform for the developof dis-
tributed applications. Thegmy environment expandscam-1ts concurrency model into the
networked world and achieves semantic and pragmatic taaespy according to our objec-
tives that were expressed in Section 1.2.

The handling of pny for theoccam-ttprogrammer is simple and straightforward. There
is a minimum number of public processes for the basic oparafstartup/shutdown, alloca-
tion, error-/message-handling), providing the interfae®veen pny and the user-level code.
All runtime operations are handled automatically and tpansntly by the pny kernel. The
configuration is easy to understand and minimises the coditylef setting up a distributed
application.

By benchmarking, we have shown thany already has acceptable performance for dis-
tributedoccam-ttapplications, and that existiriggcam-mtapplications can easily be adapted
to take advantage ofgmy. We have also identified areas where future work on tre/pm-
plementation can improve the performance of distributqadiegtions. We hope to tesbpy
in a Grid environment in the future to identify any scalingiplems with larger systems.

As the development obccam-1t progresses in the future, themy environment will
also have to be extended to accommodate support for newogenehts; foremost for mobile
processes [27] and mobile barriers [28]. Integrating tbeypenvironment into RMX, the
occam operating system [29], will be another important aspecteffuture development
of pony. Since RMX is implemented inoccam, an RMboX-integrated pny environment
would be able to utilise RMX’s native network drivers directly rather than going thgbuan
underlying operating system. This could further enhand¢&ork performance compared to
versions ofoccam-ttand mny that are running on top of an ‘ordinary’ OS.

Other new features added e@cam-ttin the future would gradually have to be incor-
porated into pny as well, so that semantic transparency betwexy @ndoccam-mtwould
be preserved. Other areas of future work could be the adapfigony for different ar-
chitectures (dealing with endianism etc.), a security rhéarepony (introducing encrypted
network communication), as well as alternative startup emfiguration models forgny
applications distributed on clusters.

For a detailed discussion on possible future work onyp the reader is referred to [8].
Potential for further development never ceases, justtikke ‘real world’— whichoccam-mt
and pny are designed to model.

Acknowledgements

The authors are very grateful to Fred Barnes for his work orkiReC compiler and his
helpfulness in discussing the various issues arising ftoendevelopment of gny and its
integration into the KRC environment.

Thanks also go to Peter Welch and the other members of theetsitiy of Kent's Con-
currency Research Group, as well as the anonymous revieleses. advice in reviewing
this paper and their contributions to our many discussionthe project were very valuable.

Finally, the authors would like to acknowledge EPSRC'’s supfaoorparts of this work
through a research studentship (EP/P50029X/1) and the Tpisject (EP/C516966/1), as
well as the Computing Laboratory at the University of Kentgapporting parts of this work
through a Brian Spratt Bursary.

M. Schweigler and A.T. Sampsonafy — Theoccam-1tNetwork Environment 107

References

[1] C.A.R. Hoare.Communicating Sequential ProcessBsentice-Hall, London, 1985. ISBN: 0-13-153271-
5.

[2] R. Milner. Communicating and Mobile Systems: the Pi-Calcul@ambridge University Press, 1999.
ISBN-10: 0521658691, ISBN-13: 9780521658690.

[3] Inmos Limited. occam 2.1 Reference Manual. Technicpbrg Inmos Limited, May 1995. Available at:
http://wotug.org/occam/.

[4] Inmos Limited. Transputer Reference Manudrentice Hall, March 1988. ISBN: 0-13-929001-X.

[5] I. Foster, C. Kesselman, and S. Tuecke. What is the Gridthéed Point ChecklistGRIDToday July
2002. Available athttp://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf.

[6] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy oBitid: Enabling Scalable Virtual Organizations.
International Journal of Supercomputer Applicatioi2901. Available athttp://www.globus.org/
research/papers/anatomy.pdf.

[7] 1. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. TheeRalpgy of the Grid: An Open Grid Services
Architechture for Distributed Systems Integratio@lobal Grid Forum June 2002. Available atittp:
//wuw.globus.org/research/papers/ogsa.pdf.

[8] Mario Schweigler.A Unified Model for Inter- and Intra-processor ConcurrendyhD thesis, University
of Kent, UK, Canterbury, Kent, CT2 7NF, August 2006.

[9] F.R.M. Barnes and P.H. Welch. Prioritised Dynamic Cominating Processes: Part I. In James Pascoe,
Peter Welch, Roger Loader, and Vaidy Sunderam, edi@ospmunicating Process Architectures 2002
WoTUG-25, Concurrent Systems Engineering, pages 33143&LPress, Amsterdam, The Netherlands,
September 2002. ISBN: 1-58603-268-2.

[10] Inmos Limited. The T9000 Transputer Instruction Set Manu8IGS-Thompson Microelectronics, 1993.
Document number: 72 TRN 240 01.

[11] M.D. May, P.W. Thompson, and P.H. WeldXetworks, Routers and Transputerslume 32 ofTransputer
andoccam Engineering SeriedOS Press, 1993.

[12] M.D. Poole. Occam for all — two approaches to retarggtthe INMOS compiler. In Brian O’'Neill,
editor, Parallel Processing Developments, Proceedings of WoTUGdIBme 47 ofConcurrent Systems
Engineering pages 167-178, Amsterdam, The Netherlands, March 1998d\Wocam and Transputer
User Group, |IOS Press. ISBN: 90-5199-261-0.

[13] P.H. Welch and D.C. Wood. The Kent Retargetable occammi@ier. In Brian O'Neill, editor,Parallel
Processing Developments, Proceedings of WoTUGv@Rime 47 ofConcurrent Systems Engineerjng
pages 143-166, Amsterdam, The Netherlands, March 199@dWocam and Transputer User Group,
IOS Press. ISBN: 90-5199-261-0.

[14] F.R.M. Barnes and P.H. Welch. Mobile Data, Dynamic &Htion and Zero Aliasing: anccam Exper-
iment. In Alan Chalmers, Majid Mirmehdi, and Henk Muller,iteds, Communicating Process Architec-
tures 2001 volume 59 ofConcurrent Systems Engineerjqages 243—-264, Amsterdam, The Netherlands,
September 2001. WoTUG, 10S Press. ISBN: 1-58603-202-X.

[15] Frederick R.M. Barnes.Dynamics and Pragmatics for High Performance Concurren®hD thesis,
University of Kent, June 2003.

[16] I.N. Goodacreoccam NetChans, 2001. Project report.

[17] M. Schweigler. The Distributedccam Protocol - A New Layer On Top Of TCP/IP To Sereecam
Channels Over The Internet. Master's thesis, Computingtatbry, University of Kent at Canterbury,
September 2001. MSc Dissertation.

[18] M. Schweigler, F.R.M. Barnes, and P.H. Welch. Flexjileansparent and Dynam@ccam Network-
ing with KRoC.net. In J.F. Broenink and G.H. Hilderink, edito@ymmunicating Process Architectures
2003 WoTUG-26, Concurrent Systems Engineering, ISSN 1383-753e® 199-224, Amsterdam, The
Netherlands, September 2003. I0S Press. ISBN: 1-58603381

[19] M. Schweigler. Adding Mobility to Networked Channejqes. In I. East, J. Martin, P. Welch, D. Duce,
and M. Green, editor§;ommunicating Process Architectures 20@dlume 62 oMoTUG-27, Concurrent
Systems Engineering, ISSN 1383-757&ges 107-126, Amsterdam, The Netherlands, Septembér 200
IOS Press. ISBN: 1-58603-458-8.

[20] Henk L. Muller and David May. A simple protocol to commioate channels over channels. BURO-
PAR '98 Parallel Processing, LNCS 147fages 591-600, Southampton, UK, September 1998. Springer
Verlag.

[21] P.H. Welch, J.R. Aldous, and J. Foster. CSP Networkargl&va (JCSP.net). In P.M.A. Sloot, C.J.K. Tan,
J.J. Dongarra, and A.G. Hoekstra, edit@t®mputational Science - ICCS 2Q0®lume 2330 ol ecture
Notes in Computer Sciencpages 695-708. Springer-Verlag, April 2002. ISBN: 3-38393-X. See

108

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. Schweigler and A.T. Sampsonaiy — Theoccam-1tNetwork Environment

also:http://www.cs.kent.ac.uk/pubs/2002/1382.

P.H. Welch and B. Vinter. Cluster Computing and JCSPwéeking. In James Pascoe, Peter Welch,
Roger Loader, and Vaidy Sunderam, edit@@®mmunicating Process Architectures 2002 TUG-25,
Concurrent Systems Engineering, pages 213-232, I0S Pawsterdam, The Netherlands, September
2002. ISBN: 1-58603-268-2.

F.R.M. Barnes. Interfacing C and occam-pi. In J. Bro&nH. Roebbers, J. Sunter, P. Welch, and D. Wood,
editors,Communicating Process Architectures 2008lume 63 ofWoTUG-28, Concurrent Systems En-
gineering, ISSN 1383-757pages 249-260, Amsterdam, The Netherlands, SeptembBr Press.
ISBN: 1-58603-561-4.

Fred Barnes. Socket, File and Process Libraries foccam. Computing Laboratory, University of
Kent at Canterbury, June 2000. Available Btitp://www.cs.kent.ac.uk/people/staff/frmb/
documents/.

J.M.R. Martin and P.H. Welch. A Design Strategy for Diea#t-free Concurrent Systems. Tmansputer
Communicationsvolume 3 (4), pages 215-232. Wiley and Sons Ltd., UK, OataBe6.

S. Stepney, P.H. Welch, F.A.C. Pollack, J.C.P. Woolc&c Schneider, H.E. Treharne, and A.L.C. Cav-
alcanti. TUNA: Theory Underpinning Nanotech Assemblema@tbility Study), January 2005. EPSRC
grant EP/C516966/1. Available fromttp://www.cs.york.ac.uk/nature/tuna/index.htm.

F.R.M. Barnes and P.H. Welch. Communicating Mobiledesses. In |. East, J. Martin, P. Welch, D. Duce,
and M. Green, editor§;ommunicating Process Architectures 20@dlume 62 oMoTUG-27, Concurrent
Systems Engineering, ISSN 1383-757&ges 201-218, Amsterdam, The Netherlands, Septembér 200
IOS Press. ISBN: 1-58603-458-8.

P.H. Welch and F.R.M. Barnes. Mobile Barriers for ocepinSemntics, Implementation and Application.
In J. Broenink, H. Roebbers, J. Sunter, P. Welch, and D. Wedithrs,Communicating Process Architec-
tures 2005volume 63 oMOTUG-28, Concurrent Systems Engineering, ISSN 1383 {&afes 289-316,
Amsterdam, The Netherlands, September 2005. IOS Pressl: IEB8603-561-4.

F.R.M. Barnes, C.L. Jacobsen, and B. Vinter. 8 a Raw Metaloccam Experiment. In J.F. Broenink
and G.H. Hilderink, editorsCommunicating Process Architectures 2008 TUG-26, Concurrent Sys-
tems Engineering, ISSN 1383-7575, pages 269-288, Amsiertlae Netherlands, September 2003. 10S
Press. ISBN: 1-58603-381-6.

