Communicating Process Architectures 2005 165
Jan Broenink, Herman Roebbers, Johan Sunter, Peter WetdDavid Wood (Eds.)
I0S Press, 2005

Lazy Cellular Automata
with Communicating Processes

Adam SAMPSON, Peter WELCH and Fred BARNES

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, England.

{atsl,P.H.Welch,F.R.M.Barnes} @kent.ac.uk

Abstract. Cellular automata (CAs) are good examples of systems intwaige num-
bers of autonomous entities exhibit emergent behavioundJthe occam-pi and
JCSP communicating process systems, we show how to cotf$az¢’ and “just-in-
time” models of cellular automata, which permit very effitigparallel simulation of
sparse CA populations on shared-memory and distributadrags

Keywords. CSP, occam-pi, JCSP, parallel, CA, Life, lazy, just-ingimimulation

I ntroduction

The TUNA project is investigating ways to model nanite adsiens that allow their safety
properties and emergent behaviour to be analysed. We atengawith the occam-tt lan-
guage [1] and with the JCSP package for Java [2], both of whiokide concurrency facil-
ities based on the CSP process algebra anddtedculus. The techniques described in this
paper may be used in either environment; examples will bergirr a pseudocode based on
occam-Tt

Autonomous devices with emergent behaviour will be famiiiaanybody who has ex-
perimented with cellular automata; indeed, some of therfisdels constructed by the TUNA
project are in the form of CAs. While CAs are significantly pier than the sorts of devices
we want eventually to model — for example, they have very &rafate, usually operate upon
a regular grid, and have a common clock — they provide a gaotirgy point for modelling
approaches. We examine several sequential and parallebaghes to simulating cellular
automata iroccam-rtand JCSP.

The major desirable feature for a CA simulation is that vargé scales can be achieved.
This means that it should execute as fast as possible and lisgeamemory as possible. In
particular, we would like to be able to take advantage of blgtributed clusters of machines
and new multi-core processor chips. We demonstrate appesdao CA modelling that satisfy
these goals.

1. The Gameof Life

The CA that we will use as an example is John Conway’s Gamefef usually referred to
simply as “Life” [3]. First discovered in 1970, Life produstartling emergent behaviour
using a simple rule to update the state of a rectangular ggich cell of which may be either
“alive” or “dead”. All cells in the grid are updated in a sieglime step (“generation”). To
compute the new state of a cell, its live neighbours are ealynthere the cell’s neighbours
are those cells that are horizontally, vertically or diagipnadjacent to it. If a cell was dead

166 A.T. Sampson et al. / Lazy Cellular Automata with CommuimgaRrocesses

|
|| | [| || ||
— — — —
HEE [|| | [] ||
| ||]| HEE

Figurel. Five generations of a Life glider; black cells are alive.

in the previous generation and has exactly three live neigh) it will become alive; if it
was alive in the previous generation and does not have @xaetly two or exactly three live
neighbours, it will die. (See Figure 1.)

Thirty-five years of research into Life have produced a vadiection of interesting
patterns to try. Simple arrangements of cells may repeatlcqyattern (“blinkers”), move
across the grid by moving through a cyclic pattern that empdsith the original arrangement
in a different location (“gliders”), generate a constaméain of other patterns (“guns” and
“puffer trains”), constantly expand to occupy more of thedf'space-fillers”), or display
many other emergent behaviours. Life is Turing-completis;possible to create logic gates
and Turing machines [4].

Life has some features which allow it to be simulated vercigfitly. The most impor-
tant is that cells only change their state in response toggsim the neighbouring cells; this
makes it easy to detect when a cell’s state must be recadcul@he new state rule is entirely
symmetric; it does not make a difference which of a cell'gghbburs are alive, just that a
given number of them are, so the state that must be propagategen cells does not need
to include cell locations. Finally, the new state rule isdzhen a simple count of live neigh-
bours, which can be incremented and decremented as statgech@&ssages are received
without needing to compute it from scratch on each cycles€Heatures are not common to
all CAs — and certainly will not hold for some of the modelstthB&NA will investigate — but
are nonetheless worth investigating from the implemesifgoint of view; if such a feature
makes a system especially easy to simulate or reason abauyibe worth modifying a
TUNA design to include it.

Some simple variants on Life exist that can be simulatedgusear-identical code.
The normal Life rule is that a cell must have three neighbowoiise born and two or three
neighbours to survive; many variations simply change tmesebers. (For example, in the
HighLife variant, a cell may also survive if it has six neighiss.) Other variations change
the topology of the Life grid: HexLife uses a hexagonal gadd 3D Life uses a three-
dimensional grid where cells are cubes and have 26 neighbblany other CAs that run
on regular grids, such as WireWorld [5], may also be implet®e@nvithin a Life-simulating
framework, although they may require cells to keep or transfore state.

2. Framework

Input and output for most of these approaches can be handied common code; during
development we constructed ancam-tt framework which could support several different
simulation approaches.

The input to a CA simulator consists of an initial state for(al some) of the cells. For
testing purposes, simple predictable patterns are theumseail, since correct behaviour may
easily be recognised. However, some problems may be diffic@xpose except under ex-
treme load, so the ability to generate random patterns,loatbcomplex predefined patterns
from disk, is also desirable. For CAs such as Life, learnogetognise correct and incorrect
behaviour by eye is straightforward.

The output clearly must include the state of all of the cellgs also helpful to display
statistics such as the number of active cells. In order tainbeasonable display perfor-
mance, it is desirable to only update the screen once perajere(or even less often); this

A.T. Sampson et al. / Lazy Cellular Automata with CommuimgaRrocesses 167

can be done by having a simulation process send a “tick” taligy@ay once per generation.
Depending on how the display is implemented, it may be nacgs$asr it to keep its own state
array for all the cells; this can allow more interesting aksations than simply showing the
cells’ states. For example, it is useful in Life to show howdaeach cell has been alive; the
present framework uses tbecam-tOpenGL bindings [6] to display a 3D projection of the
Life grid where cells’ ages are represented by their heightscolours.

3. Sequential Approach

The simplest approach to simulating Life is to walk over thére grid for each generation,
computing the new state of each cell (typically writing itara second copy of the grid, which
is exchanged with the first at the end of each step). This iéfgis O(number of cells in the
grid).

As the majority of existing Life implementations are sedisnsome techniques have
been devised to speed up simulation. The most promisingllisGBsper’s HashLife algo-
rithm [7], which computes hash functions over sections efghd in order to spot repeating
patterns; by caching the new state resulting from such ipattie first time they are com-
puted, several generations of the new state for that regeyngimply be retrieved from the
cache rather than computing it again, provided no otheepwtinteract with it. HashLife is
particularly useful for quickly computing the outcome ofaad-running Life pattern when
there is no need to show the intermediate steps. The penfmendepends on the type of
pattern being simulated; patterns with many repeating eteswill perform very well, but
the worst-case behaviour (where the pattern progresshewtitepetition) is worse than the
simple approach, since hash values are being computed fpaino

The sequential algorithms typically have good cache logalnd can thus operate very
efficiently on a single processor. (Life has even been implaied using image manipulation
operations on a graphics card processor.) However, in tode@mulate very large Life grids
— those with hundreds of millions of active cells — at an atalele speed, we need to take
advantage of multiple processors and hosts; we must igegstparallel algorithms.

4. Process-per-Cell Approaches

We examine a number of CSP-based parallel approaches tdlmgdsfe in which each
Life cell is represented by a process, starting with the t@st@pproach and demonstrating
how incremental changes may be made to the model to improt@ pance.

4.1. Simple Concurrent Approach

The simplest parallel model of Life using a CSP approach isawe one process for each
cell, connected using channels to form a grid (see Figure 2).

Wiring up the channels correctly is the most complex parthid approach — one ap-
proach is to say that each cell “owns” its outgoing chanmeltéch are numbered from 0 to 7
clockwise starting from the top; chann€loutgoing then connects to chanal+4) mod 8
on its destination cell, which can be found by adding an gmpate offset to the current lo-
cation (see Figure 3). The easiest way to deal with the cdimmscat the edge of the grid is
to wrap them around (making the grid topologically equinake a torus); alternately, they
may connect to “sink cells” which behave like regular cells &ct as if they are always dead.
None of the cells need to know their absolute locations irgtik

On each step, each cell must find out the state of those arbufiiis is done with an
I/0-PAR exchange [8] in which each cell, in parallel, outpii$ state to its neighbours and

168 A.T. Sampson et al. / Lazy Cellular Automata with CommuimgaRrocesses

Figure2. Grid of cell processes with interconnecting channels.

INITIAL [Height] [Width]BOOL initial.state IS [...]:
[Height] [Width] CHAN BOOL changes:
[Height] [Width] [8]CHAN BOOL links:
VAL [8]INT y.off IS [-1, -1, -1, O, O, 1, 1, 1]:
VAL [8]INT x.off IS [-1, O, 1, -1, 1, -1, 0, 1]:
INT FUNCTION wrap (VAL INT v, max) IS (v + max) \ max:
PAR
display (changes)
PAR y = O FOR Height
PAR x = 0 FOR Width
[8]CHAN BOOL from.others IS
[i = 0 FOR 8 |
links [wrap(y + y.off[i], Height)]
[wrap(x + x.off[i], Width)]
[E+4) \ 8]]:
cell (from.others, links[y] [x], changesl[y] [x],
initial.statel[y] [x])

Figure 3. Code to set up Life grid.

to the display, and reads its neighbours’ state. Once thekielvs its neighbours’ states,
it computes its own state for the next generation (see Figur@s each cell must do nine
outputs and eight inputs for each generation, there is nd fogean external clock; the entire
grid stays synchronised.

The 1/0-PAR design rule guarantees that this implementasdree from deadlock.
However, it runs very slowly — particularly when compare@teequential implementation —
because the majority of the time is spent doing communikatimany of which are carrying
state that has not changed. As we know that a Life cell's stéltenot change unless its
neighbours’ states have changed, this is wasteful, péatigdor sparse patterns on a large
grid.

4.2. Using a Barrier

We thus want to avoid communicating except upon state clsaagell should only broadcast
its state to its surrounding cells when it changes. This iesphat we cannot use the I/O-
PAR approach any more. Furthermore, it is possible that twags of cells which are active
may not be in contact with each other, so the inter-cell comoaiions cannot provide the
“generation tick”; another approach must be found.

A.T. Sampson et al. / Lazy Cellular Automata with CommuimgaRrocesses 169

PROC cell ([8]CHAN BOOL inputs, outputs,
CHAN BOOL changes!,
VAL BOOL initial.state)
INITIAL BOOL my.state IS initial.state:
[8]BOOL neighbour.states:
WHILE TRUE
SEQ
PAR
changes ! my.state
PAR i = 0 FOR 8
PAR
outputs[i] ! my.state
inputs[i] ? neighbour.states[i]
my.state := compute.new.state (neighbour.states)

Figure4. Code for one Life cell using the “simple” approach.

We could synchronise all the cells by having a central “clqmocess with a channel
leading to each cell, which outputs in parallel to all of thémowever, we are trying teeduce
the number of communications per generation! Fortuna@8P provides a more efficient
alternative in multiway events, which are availabl®@gtam-tand JCSP as barrier synchro-
nisations. Barriers maintain an “enrolled” count of pramswhich may synchronise upon
them; a process that attempts to synchronise will not pabaaél all processes enrolled with
the barrier are attempting to do so. We can provide generatfachronisation by making
cell processes synchronise on a barrier shared with allttier cells in the grid.

Cells start by performing a single I/0O-PAR exchange, asésimple approach, in order
to obtain the initial state of their neighbours; this coutddvoided if all cells had access to
a shared initial state array. The state of the cells arouechtis now held as a simple count
of live cells. For each generation, a cell first computes @ istate; if it has changed, it
broadcasts it to the cells around it and to the display. i $ychronises on the barrier, and
finally polls its input channels to collect any changes treatenbeen sent by its neighbours,
adjusting the count of live neighbours appropriately (segie 5).

This approach would cause instant deadlock if regular datedoccam-1t channels —
which cause writes to block until a matching read comes aland vice versa —were used to
connect the processes, since all writes are done beforathersynchronisation and reads
afterwards. Instead, the channels should be one-placerbdff that is, a process may write
one message to the channel without blocking, and the readhagdasynchronously collect
the message at some point in the future. Unfortunately,eM@SP provides N-buffered
channelspccam-tt does not; it is, however, possible to simulate them usingi@hBbuffer
process running at high priority [9]. The high priority gaatees that all the buffer processes
will run before the barrier synchronisation completes.gligistrictly an abuse of the priority
system, which is meant to be used for advisory purposes;@ywe have found priorities
useful for prototyping new communications mechanismsttiks.)

With this approach, we are now only communicating when asthédnge occurs. How-
ever, all the cells on the grid are still taking part in therlgarsynchronisation on each cycle;
it is faster, but we can do better.

4.3. Resigning from the Barrier — The Lazy Model
A process that is enrolled on a barrier may also resign frorA itesigned process acts as

through it were not enrolled; the barrier does not wait fdoisynchronise before allowing
other processes to run. We can take advantage of this to nedlke'sleep” whilst nothing

170 A.T. Sampson et al. / Lazy Cellular Automata with CommuimgaRrocesses

PROC cell ([8]ONE-BUFFERED CHAN BOOL inputs, outputs,
CHAN CHANGE changes!, BARRIER bar,
VAL BOOL initial.state)
INITIAL BOOL my.state IS initial.state:
INT live.neighbours:
SEQ
do one I/0-PAR exchange as before to count
initially-alive neighbours
WHILE TRUE
BOOL new.state:
SEQ
compute new.state based on live.neighbours
IF
new.state <> my.state
PAR -- state changed
my.state := new.state
PAR i = 0 FOR 8
outputs[i] ! new.state
changes ! new.state
TRUE
SKIP -- no change
SYNC bar
SEQ i = 0 FOR 8
PRI ALT
BOOL b:
inputs[i] ? b
. adjust live.neighbours
SKIP
SKIP -- just polling

Figure5. Code for one Life cell using the “barrier” approach.

around them is changing. This results in “lazy simulatiomfiere cells only execute when it
is absolutely necessary.

IF

new.state <> my.state
SEQ
broadcast new state as before
TRUE
SEQ -- no change, so go to sleep
set priority to high
RESIGN bar
ALT 1 = O FOR 8
BOOL b:
inputs[i] 7 b
adjust live.neighbours
SYNC bar

set priority to normal

Figure 6. Changes to the “barrier” approach to support resignation.

This requires some simple modifications to the “barrier’rapgh. The basic idea is that
if the state has not changed, then the process resigns febathier and performs a regular
ALT across its input channels; it will thus not run again untileiteives a change message

A.T. Sampson et al. / Lazy Cellular Automata with CommuimgaRrocesses 171

from a neighbour, at which point it will rejoin the barriegrehronise on it, and continue as
it did with the previous approach (see Figure 6).

However, we have also had to insert some priority changei.gfocesses are running at
the same priority, then the barrier resignation causeseagaadition to be present: between
the ALT and the end of th@ESIGN block, it is possible that all the other processes would
synchronise on the barrier, meaning that when this proogsshsonises it must wait for
the next generation. The priority changes are the simplagttevaccomplish this, but other
approaches are arguably more correct [10].

This optimisation causes a significant performance imprrd, since only active cells
occupy CPU time: a small glider moving across a huge gridamily require the cells that the
glider touches to run. For typical patterns, performanc®is rather better than a sequential
simulation of the same grid, and the performance is muclteb#tan the first parallel ap-
proach described: after fifty generations on a randomliyaimsed large grid, this approach
was a factor of 15 faster than the original approach, anddlagive performance increases
further as the number of active cells decreases. Howevsti)lises far more memory, as
there is a dormant process for each grid cell with a numbehanhgels attached to it.

4.4. Using Shared Channels

Memory usage may be reduced significantly by cutting downhennumber of channels.
Since Life cells do not care about which neighbouring celhange message was received
from, we can take advantage of anotleecam-1t and JCSP feature: shared channels. The
approach is simply to replace the eight channels comingaath cell with a single shared
channel; each of the eight neighbouring processes holdst@nee to the shared channel.

The code is much the same as the previous approach: the aargels to the polling
code, which must poll the shared channel repeatedly ursiles no data. It is also necessary
for the one-place buffered channels to become eight-plafferbd channels, since it is pos-
sible that all eight cells surrounding a cell may have chdn@Eo simulate this without real
buffered channels, the approach is to make the buffers taritee eight neighbouring cells
in parallel.)

We have thus reduced the number of channels by a factor of énghemory terms, this
IS not quite as good as it looks, since the buffer size in ehelmgel has been increased by a
factor of eight, and some overheads are caused by the clsdrgirf) shared; nonetheless we
have saved memory, and made the code a little more strarglatfd too.

More importantly, we have freed the code from the constsawfita rectangular grid. It
would now be easy to use the same cells for a grid with a diftemamber of neighbours, or
even on “grids” with non-regular topologies such as Pentibse[11].

While this implementation scales significantly better tila@ conventional sequential
implementation — and even performs better in many casegreitsory usage is still high.

4.5. Using Forking — The Just-In-Time Model

The major problem with the previous approach is that thestilisone dormant process per
grid cell; whileoccam-tt processes are extremely lightweight compared to OS thydasls
still require space to hold their internal state variablestunately, we can avoid dormant
processes entirely usiragcam-tts “forking” mechanism.

Forking is a safer variant of thread-spawning, in which pseters are passed safely
with the semantics of channel communication, and an em@d@8RKING block waits for all
processeBORKed inside it to finish. Itis commonly used to spawn worker psses to handle
incoming requests, as a more efficient replacement for tbel“pf workers” approach that
is often found in classicalccam code.

172 A.T. Sampson et al. / Lazy Cellular Automata with CommuimgaRrocesses

REC PROC cell ([Height] [Width]PORT BOOL state, running,
MOBILE BARRIER bar, VAL INT y, x)
SEQ
SYNC bar -- Phase 2 (cells are started from Phase 1)
INITIAL BOOL me.running IS TRUE:
WHILE me.running
BOOL new.state:

SEQ
SYNC bar -- Phase 1: read state, atomic set running
compute new.state from neighbours
IF

new.state <> statel[y] [x]
PAR i = O FOR 8
compute neighbour location (n.y, n.x)
INITIAL BOOL b IS TRUE:
SEQ
atomic.swap (running[n.y][n.x], b)
IF
b -- neighbour already running
SKIP
TRUE -- neighbour not running
FORK cell (state, running, changes!,
bar, n.y, n.x)
TRUE
me.running := FALSE
SYNC bar -- Phase 2: write state, clear running
state[y] [x] := new.state
running[y] [x] := FALSE

Figure7. Code for one Life cell using the “forking” approach.

For this example, we shall do away entirely with channelsrftar-cell communication
— a very nontraditional approach foccam! Instead, we use shar@@RT data with phased
access controlled by a barrier [10]. The framework stagsstmulation byFORKing off a set
of cell processes for the cells that are initially activeclEgeneration then consists of two
phases. In Phase 1, the cell reads the states of the cellsktddirectly from the shared state
array), computes its new state, and ensures that any catla¢led to change are running. In
Phase 2, the cell writes its own state back to the shared geayFigure 7).

The display update can now be done more efficiently: the aygmlocess shares the state
array and the barrier with the cells, and follows the sameseliscipline, reading the state
array in Phase 1. It may even be possible to use the compdispky memory directly as
the state array, doing away with the separate display pscaggely.

The logic to ensure that cells are started correctly requsmme explanation. Since a
cell may become active for more than one reason — for exaifpte, cells above and below
it both change state — it is necessary to prevent more tharcelherocess being0RKed
for the same cell. A shared “running” array is used for thisPhase 1, cells atomically
swap a variable containing the vallRUE with the element in the array representing the cell
they want to start; if the variable contaiF&LSE after the swap, the cell was not already
running and needs to be started. In Phase 2, dying cells tlesietslots in the “running”
array toFALSE. As new cell processes aF@RKed off from Phase 1, they must do an initial
barrier synchronisation to get into Phase 2 for the top ofdbp. (The only action that would
normally be performed in Phase 2 is to write a changed cdlitesnto the array, and a
newly-forked cell will not need to do that.)

The amortised cost of forking off new processesd@sam-ttis very low (of the order of

A.T. Sampson et al. / Lazy Cellular Automata with CommuimgaRrocesses 173

70 IA32 instructions), so the sample code will happily cdesia cell “dead” if it has been

inactive for a single generation. In practice, this is ragessimistic for most Life patterns;

many cells will toggle on and off with a period greater thaw tyenerations. If we wished to
reduce the rate at which processes are created and destacsiatple heuristic could be put
into place: count the number of generations that the cellbleas inactive, and only cause
the cell process to die once it has been inactive for N geloasatThis may result in better

performance with JCSP on a system that uses native threads.

We now have a very efficient parallel Life implementation ihigh only as many pro-
cesses as are needed are running at any one time — procegsnciedone “just in time”.
However, it relies upon shared memory, and thus cannot bieimgnted (efficiently) across
a cluster of machines. For a cluster solution, our approaekls further modification.

4.6. Dynamic Network Creation

As occam programmers have known since the 1980s, CSP channels prawidnvenient
way of modelling network connections between discretegseors. We would therefore like
to use channels to connect up our cells while keeping as matiyecadvantages of the
“forking” approach as possible — in particular, only havasgymany processes in memory as
are necessary for the level of activity on the grid. To do,thswill need to dynamically build
channel connections between cells — which we can do wsiogm-1ts mobile channels [9].

Figure 8. Ether surrounding clumps of active processes.

As with the previous approach, problems are caused when lwgbecs of cells split
apart then rejoin, causing the cells between them to beagetifor multiple reasons. In this
case, it is necessary to connect up the channels corredilyebe the groups of rejoining
cells. Previously we solved this sort of problem using sthatata and atomic operations;
now we shall instead use a coordinating process which manadgenel ends that are not
connected to active processes. As, from the modelling petisqe, this process occupies the
space around and between the clusters of active cells,atledcthe “ether” (see Figure 8).

Cells now need to know their locations relative to an arbjtraference point, in order
that the ether can identify clusters of cells that drift &jpad rejoin. For a non-regular topol-
ogy, it may be possible to use unique identifiers rather tloandinates, and use external data
structures to represent the relationships between dedisstheme is rather less flexible than
the shared-channels approach, but may be easier to mandgesame circumstances.

Each cell process has channels connecting it to the cellsdrib (either shared or un-
shared), much like our previous parallel approaches, éxtep they are mobile channels,
the ends of which may be passed around between processhgrBaess also has a connec-
tion to the ether (via a channel shared between all cellsgrwhgoes inactive and exits, it

174 A.T. Sampson et al. / Lazy Cellular Automata with CommuimgaRrocesses

sends a message to the ether returning its channel ends tireguerspective of the cell, all
channels are connected to other cells; however, they maglictonnect to the ether.

When the ether receives a change notification from a cepaivis a new cell in the ap-
propriate location, checking its internal data structuoesee whether it should be connected
to any other cells in its vicinity using other channel ends the ether is holding. If the ether
can reuse existing channels it will; otherwise it will ceeaew mobile channels, keep one
end, and pass the other to the new process. (Since the seaestisting channel ends is done
purely on the basis of coordinates, it should be possibleotd dery efficiently within the
ether.)

As well as cluster-friendliness, using this approach aB® the advantage that there is
no longer a need for a big array of state. Indeed, sectionseoftid that are inactive can
just disappear, provided their states are known to the @oatidg process; if they consist
of empty space then this is easy. This approach should tiverafork very well for testing
gliders, spaceships and other Life patterns that move sithesgrid leaving little or nothing
behind them; a feature that it has in common with HashLifsuslising the output from a
Life simulation implemented this way could be done by autticaly zooming the display to
encompass the section of the field that is currently beinglsitad; this could produce a very
compelling visualisation for space-fillers and patternshsass the R-pentomino that expand
from a simple cluster.

One final problem: the single ether process is a classiodnaitk; not a desirable feature
for a parallel system, particularly if we want to make ourst&r network topology mimic the
connections in our Life grid.

4.7. Removing the Bottleneck

The final change is to parallelise the ether. This may be dtaghktforwardly by divid-
ing it up into sections by coordinates (wrapping around so &m infinitely large grid may
be simulated). Adjacent ether processes would need to cocate in order to create new
processes and channels within the appropriate ether;affictcontrollers in the real world
provide an appropriate analogy. As processes that needrimoaicate with each other will
most likely be registered with the same ether, this appradfeins good locality for cluster
implementations of Life. In environments which do not pawvitransparent network chan-
nels, the ether processes can also be made responsiblédtiiog s appropriate adaptors at
machine boundaries.

5. Process-per-Block Approaches

While we have described several efficient ways of implenmgntiife usingoccam-Tts fa-
cilities, all of the approaches described use one CSP maquescell, and thus still have
significantly higher per-cell overhead than the existinguantial approaches. However, this
is relatively easy to fix: all of the above approaches may t@ieg equally well to situa-
tions where each “cell” process is actually simulating augrof cells using a sequential (or
even internally parallel) approach. The only change istti@state to be exchanged between
processes becomes the set of states of the cells on theiadjettges or corners.

Existing sequential approaches can be used virtually urfraddo obtain high perfor-
mance. It may even be possible to switch between severalreliff sequential approaches
depending on the contents of the block; for example, thestadtibetween HashLife and a
“plain” sequential algorithm could be made on the fly depegdipon the cache hit rate. To
minimise communication costs when two chunks are on the saathine, mobile arrays of
data could be swapped back and forth, or shared data coulskle protected by a barrier.

A.T. Sampson et al. / Lazy Cellular Automata with CommuimgaRrocesses 175
6. Conclusion

We have presented a number of approaches for simulatingaredlutomata in efficient ways
in extended-CSP programming environments. It is to be htpdome of these ideas could
be used to implement highly-parallel CA simulators that cperate efficiently on extremely
large grids. It should be possible to extend these ideagiie@és and into other cases where
many autonomous entities need to be simulated — for exarfipis element analysis or
computational fluid dynamics.
We have also presented a number of applications for newituradity in theoccam-tt

environment: in particular, some of the first practical usedarriers and safely-shared data.

7. Acknowledgements

The authors would like to acknowledge EPSRC'’s support fiz work through both a re-
search studentship (EP/P50029X/1) and the TUNA projectGEP6966/1).

References

[1] F.R.M. BarnesDynamics and Pragmatics for High Performance Concurrer®lyD thesis, University of
Kent at Canterbury, June 2003.

[2] P.H. Welch. Process Oriented Design for Java: Concayréor All. In H.R.Arabnia, editorProceed-
ings of the International Conference on Parallel and Distiied Processing Techniques and Applications
(PDPTA'2000) volume 1, pages 51-57. CSREA, CSREA Press, June 2000.

[3] M. Gardner. The fantastic combinations of John Conwagw solitaire game “life” Sci. Amer.223:120—
123, October 1970.

[4] A. Adamatzky, editor.Collision-Based Computindgspringer Verlag, 2001.

[5] A.K. Dewdney. Computer RecreationSci. Amer.262:146, January 1990.

[6] D.J. Dimmich and C.L. Jacobsen. A foreign function iféee generator for occam-pi. In J. Broenink,
H. Roebbers, J. Sunter, P.H. Welch, and D.C. Wood, edi@s)municating Process Architectures 2005
Concurrent Systems Engineering, pages 235-248, 10S PrhesNetherlands, September 2005. 10S
Press.

[7] R.W. Gosper. Exploiting regularities in large cellufgracesPhysica D) 10:75-80, 1984.

[8] P.H. Welch, G.R.R. Justo, and C.J. Willcock. Higher-eewaradigms for Deadlock-Free High-
Performance Systems. In R. Grebe, J. Hektor, S.C. HiltoR.Mane, and P.H. Welch, editofsansputer
Applications and Systems "93, Proceedings of the 1993 Wobrdahsputer Congress/olume 2, pages
981-1004, Aachen, Germany, September 1993. I0S Press, dtherinds. ISBN 90-5199-140-1.

[9] F.R.M. Barnes and P.H. Welch. Prioritised dynamic cominating processes: Part 1. In J. Pascoe,
P.H. Welch, R. Loader, and V. Sunderam, edit@smmunicating Process Architectures 200@ume 60
of Concurrent Systems Engineerjmages 321-352, 10S Press, The Netherlands, September|2#?2
Press.

[10] F.R.M. Barnes, P.H. Welch, and A.T. Sampson. Barriecsyonisations for occam-pi. roceedings of
the 2005 International Conference on Parallel and Disttéxl Processing Techniques and Applications
(PDPTA’2005) CSREA press, June 2005. to appear.

[11] R. Penrose. U.S. Patent #4,133,152: Set of tiles foedny a surface, 1979.

