
Lazy Cellular Automata
with Communicating Processes

Adam Sampson, Peter Welch and Fred Barnes

{ats1,P.H.Welch,F.R.M.Barnes}@kent.ac.uk

University of Kent

http://www.cs.kent.ac.uk/

Lazy Cellular Automata – p.1/17



Introduction

• The Theory Underpinning Nanotech Assemblers
project needs to use PC clusters to simulate large
numbers of autonomous entities

• . . . which we’re modelling as CAs for now
• We’re using the occam-π and JCSP languages –

based on CSP extended with some ideas from the
π-calculus

• Let’s look at Life as an example. . .

Lazy Cellular Automata – p.2/17



Life

• Infinite grid of cells, each alive or dead
• On each generation step, examine self and 8

adjacent cells
• Alive and 2 or 3 live neighbours −→ alive
• Dead and exactly 3 live neighbours −→ alive
• Otherwise −→ dead
• Interesting emergent behaviour – e.g. the “glider”:

(Black cells are alive.)
Lazy Cellular Automata – p.3/17



The Simple Parallel Approach

• One process per cell, connected in a grid

Lazy Cellular Automata – p.4/17



The Simple Parallel Approach

proc cell
while true

par i = 0 for 8
... send state to neighbour[i]
... read state from neighbour[i]

... compute new state

Lazy Cellular Automata – p.5/17



Problems and Solutions, 1

• Inefficient
• 16 communications per cell per generation
• Most of the time the state hasn’t changed
• . . . so we only want to communicate changes
• We need a new way of synchronising generation

steps

Lazy Cellular Automata – p.6/17



Barriers

• Barriers synchronise a set of processes
• Processes sync on the barrier, and block until all the

enrolled processes are trying to sync. . .
• . . . at which point they all proceed happily
• We can use a barrier for our generation tick

Lazy Cellular Automata – p.7/17



The Barrier Approach

proc cell
... exchange initial state with

neighbours (as before)
while true

... compute new state
if my state has changed
par i = 0 for 8

... send state to neighbour[i]
down buffered channel

sync barrier
... check buffered channels

for changes from neighbours

Lazy Cellular Automata – p.8/17



Problems and Solutions, 2

• This is still inefficient
• All cells have to run and synchronise every

generation, even if nothing around them has changed
• . . . so we want them to “sleep” when possible
• Make them resign from the barrier

Lazy Cellular Automata – p.9/17



The Lazy Approach

proc cell
... exchange initial state
while true

... compute new state
if my state has changed
par i = 0 for 8

... send state to neighbour[i]
else
resign barrier

... wait for a change to be received
sync barrier
... check for changes

Lazy Cellular Automata – p.10/17



Problems and Solutions, 3

• This is still inefficient
• Lots of channels – can use one shared channel per

cell
• Lots of sleeping processes
• . . . so let’s only create processes for the active cells
• Use FORKing and a shared state array
• Use phases to control access to the array

Lazy Cellular Automata – p.11/17



The Just-in-Time Approach

proc cell
running := true
while running

phase 1 -- state array is constant
... read neighbour state from array
... compute my new state
if my state has changed
... fork new cell processes for

the affected neighbours
(if not already running)

else
running := false

phase 2 -- update state array
... write my new state to array

Lazy Cellular Automata – p.12/17



But Wait A Minute...

• Using shared memory isn’t very occam-ish
• Plus we’ve still got a big array in memory
• . . . so use FORKing, but still connect cells with

channels
• Use mobile channels to dynamically build the active

bits of the network

Lazy Cellular Automata – p.13/17



The Dynamic Approach

Clumps of active cells, connected by mobile channels,
floating in the ether

Lazy Cellular Automata – p.14/17



Zooming In A Bit

• No particular reason why each process should only
simulate one cell

• Make each process simulate a block of cells
• Can take advantage of existing fast sequential code
• . . . or mix-and-match parallel approaches

Lazy Cellular Automata – p.15/17



Conclusion

• A number of approaches for simulating CAs in CPA
environments

• Same approaches could be applied to other
simulation tasks (FEA, CFD)

• Applications for new functionality in occam-π
• See the paper for more details – ask us if you’d like a

copy of the demo code

Lazy Cellular Automata – p.16/17



And Finally

Any questions?

Lazy Cellular Automata – p.17/17


	Introduction
	Life
	The Simple Parallel Approach
	The Simple Parallel Approach
	Problems and Solutions, 1
	Barriers
	The Barrier Approach
	Problems and Solutions, 2
	The Lazy Approach
	Problems and Solutions, 3
	The Just-in-Time Approach
	But Wait A Minute...
	The Dynamic Approach
	Zooming In A Bit
	Conclusion
	And Finally

