Linking scales: simulation and visualisation

Adam Sampson White Space Research, University of Abertay Dundee

> Abertay University

Context

- Simulation as a scientific instrument
- Engineering in-silico experiments
- The problems of multi-scale systems
- Making a simulation useful in practice

Multiple scales

- Space
 - physical or state or phenotype or ...
 - different sizes; hierarchies
 - different kinds of spacial connectivity
- Time
 - different rates of change
 - different temporal resolutions

Multiple scales

Uncertainty

- the things we can't measure accurately
- the things we can't measure reproducibly
- the things we can't measure at all

CRISP's application: cancer

- Enormously complex biological systems
- Simulation for drug discovery, personalised drugs
 - Justifiable complexity
- Multiple physical scales: molecule, cell, growth, organ, body
- Multiple temporal scales: milliseconds, hours, lifetimes
- Multiple degrees of uncertainty: competing models, individuals differ, wet-lab experimentation difficult and expensive, hard to get many time points
 Abertay Universit

The scaling-up problem

eplicate	cell	cell	cell	cell	cell	
	cell	cell	cell	cell	cell	
	cell	cell	cell	cell	cell	
	cell	cell	cell	cell	cell	
	cell	cell	cell	cell	cell	
	cell	cell	cell	cell	cell	
	cell	cell	cell	cell	cell	
	cell	cell	cell	cell	cell	
	cell	cell	cell	cell	cell	
	cell	cell	cell	cell	cell	
	cell	cell	cell	cell	cell	

The problems of simulation

- **Scalability**: we must be able to handle realistically large simulation volumes
 - Use **concurrent** software engineering techniques to exploit parallel and distributed hardware

Abertay

iversitv

 Use cross-scale validation to build simplified higher-level models that capture the necessary characteristics from the lower level

The problems of simulation

- **Trust**: need confidence that we've designed and implemented our simulation correctly
 - Standard software engineering: configuration management, code reuse, design patterns, testing, output validation – and **argumentation** to tie it all together into a convincing argument

The problems of simulation

- Comprehensibility: experimenters must be able to set up experiments – and understand what the simulation is telling them
 - For this, you need effective visualisation

Visual analytics

- Need to understand the biology and the psychology of how we interpret information
- Design patterns an **engineering** approach
- Use existing visual languages but don't mislead
- Can quantify the effectiveness of visualisation and interaction designs
 - eye-tracking, stress measurement, biofeedback...

The visualisation process

- Determine visualisation techniques for the interesting facets of the model
- Convey multiple data dimensions
 - 3D, immersive 3D, audio, haptic feedback...
 - Subtle effects, e.g. motion blur, cueing
- Unconventional views can be effective
 - e.g. Andy's Napoleon diagrams
- How do you convey uncertainty?

Interaction

- "What happens if I..."
 - "... look at it this way?"
 - "... change this?"
 - "... do this?" (participatory simulation)
- Specialised interaction design
 - Lots of work on this for medical data
- Managing interaction latency
 - Not batch simulation any more
 - Harder in the cloud but this is changing
- Managing (limited) reproducibility

Abertay University

Visualisation for the modeller

- Adds complexity to the (platform) model
- May require more or different data for effective visualisation
 - or different views/queries on the existing data change your data model?
- May introduce more scales
 - bird's-eye view, time-lapse
- May change the nature of reality
 - time travel: rewind, try again

Building interactive simulations

- All of this means that we need to engineer our **model**, **simulation** and **visualisation** together
- Some CoSMoS work on this already
 - Tromsø Display Wall: distributed visualisation; using this to inform distribution of simulation too
 - CoSMoS driver: middleware for connecting simulations and visualisations
- Effective visualisation is useful when developing a model – validate design, spot faults

High-performance interactive simulations

- ... also known as **computer games**
- Obvious technology to use: graphics
 - Use realistic games engines to visualise real-world effects – e.g. city planning, police training...
 - Emotional involvement (quantifiable)
- Less obvious: interaction technologies
 - Lots of interesting new motion/position-tracking kit
- Less obvious: simulation technologies
 - Efficient spacial interaction, low-latency distributed simulation...

Abertay University

Any questions?

- Thanks to (among others):
 - YCCSA/CoSMoS: Paul Andrews, John Markus Bjørndalen, Teodor Ghetiu, Tim Hoverd, Fiona Polack, Carl Ritson, Elva Robinson, Susan Stepney...
 - WhSpR/CRISP: Jim Bown, Alexey Goltsov, Andy Guest, Mark Shovman, Andrea Szymkowiak, Jiujiang Zhu...

http://www.cosmos-research.org/

