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Abstract

Concurrency is unavoidable in modern software development, owing to the increasing
complexity of computer systems and the widespread use of parallel computer hard-
ware. Conventional approaches to concurrency are fraught with danger: in particular,
uncontrolled access to shared resources, poor scalability and the inability of the pro-
grammer to reason about the correctness of a program.

Process-oriented programming is a software design approach that offers solutions
to many of these problems. A process-oriented program is constructed as a network
of isolated, concurrent processes that interact only using synchronisation objects such
as channels and barriers. Using techniques drawn from CSP and the π-calculus, de-
sign rules can be constructed that enable the programmer to easily build systems with
known safety properties. Since process-oriented programs expose by their nature a
high degree of explicit concurrency, they can be efficiently distributed across multiple
processors and clusters of machines.

This thesis describes a pattern language for the engineering of process-oriented pro-
grams. Design patterns describe reusable, adaptable solutions to common problems
that may arise during the design and development of a system. A pattern language
serves the dual purposes of documenting the proven design solutions developed by a
community, and providing a common technical vocabulary.

The patterns described in this thesis are drawn from a variety of existing process-
oriented real-world applications, and have been used to construct new applications in
fields such as embedded systems, multimedia processing, and complex systems simu-
lation. While much of this work has been conducted using the occam-π programming
language, the patterns—and the new language and library facilities they inform—are
applicable to process-oriented systems built in any language.
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Chapter 1

Introduction

Concurrency is a fact of life for today’s software developers. Many applications—such
as those that communicate over a network, or provide a graphical user interface, or
simulate complex systems of interacting agents—involve the modelling of sets of enti-
ties that perform actions and respond to events at the same time and in unpredictable
ways. Solutions to these naturally concurrent problems cannot be expressed effectively
using conventional sequential programming techniques.

At the same time, parallel computer hardware has entered the mainstream, with
most users and developers now using fast, efficient multicore processors, and ever-
growing scientific and business computing problems having moved from supercom-
puters to clusters of low-cost commodity machines. Programmers can no longer afford
to ignore the need to express opportunities for parallel execution in their software—
opportunities that writing their software in an inherently concurrent way would pro-
vide naturally.

However, concurrency is widely perceived as being fundamentally difficult, and
to be avoided whenever possible. Conventional approaches to concurrent program-
ming using the low-level facilities invented at the birth of parallel hardware suffer
from well-known problems—such as uncontrolled access to shared resources, poor
scalability, unpredictable composition, and the possibility of deadlock—that make it
difficult to design, implement and maintain correct concurrent programs. As a result,
most recent frameworks for programming parallel hardware attempt to hide the fact
of concurrent execution behind high-level “data-parallel” interfaces—which make ex-
pressing simple problems easy, and complex real-world problems such as those above
nearly impossible.

It is hardly surprising that concurrency is perceived as an advanced subject that
should not be tackled except by highly-trained experts, and so most programmers
never discover the advantages of concurrent design—that expressing the concurrency
in a program can often make it simpler, while offering greater efficiency and enhanced
opportunities for parallel execution.

Process-oriented programming is an approach to concurrent software development
in which concurrency is not merely made explicit, but actively encouraged as a de-
sirable property of software systems. Process-oriented programs are built from iso-
lated, lightweight, concurrent processes that share no resources by default, and can be
used directly to model entities in a problem. Processes interact only through carefully-
defined communication and synchronisation mechanisms—for example, by passing
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CHAPTER 1. INTRODUCTION 2

messages to each other along channels. This “boxes-and-arrows” approach to software
design will already be familiar to multimedia programmers, hardware engineers, and
others used to thinking in terms of interactions between isolated components.

Preventing processes from interfering with each other, and enforcing their correct
provision and use of interfaces, means that processes can be composed in predictable
ways, improving modularity and reuse; a process-oriented program is typically built
as a hierarchical composition of interacting simple processes. The fundamental mech-
anisms of process-oriented programming have a basis in process calculi such as CSP,
which enables mathematical reasoning about programs—and, more importantly, the
construction of simple design rules that allow programmers to write programs that are
guaranteed to be safe without needing to use formal methods themselves.

Many environments have been built to explicitly support process-oriented pro-
gramming across a wide range of programming languages and platforms—including
libraries for mainstream languages, and specialised programming languages that of-
fer world-beating performance and enhanced static checking for process-oriented pro-
grams. However, many of the fundamental ideas of process-oriented programming
can be applied to the construction of concurrent systems using other technologies;
many concurrent environments now provide processes, channels, and other funda-
mentals of process-oriented programming.

It is important to note that process-oriented programming is not intended to be the
solution to all programming problems: it is merely one tool in the programmer’s tool-
box, to be combined with other approaches as appropriate for the problem in hand.
However, the process-oriented approach has already demonstrated its utility across a
considerable range of applications, and new process-oriented programming environ-
ments are under active development.

Process-oriented programming offers the chance of an engineering approach to
concurrent software development. The objective of this thesis is to identify and doc-
ument a set of design patterns for process-oriented software: best-practice solutions to
common problems that can be applied to a wide range of future concurrent software
projects.

1.1 Roadmap

Chapter 2 describes process-oriented programming in more detail, including back-
ground material on the process-oriented approach in general, the basic facilities found
in process-oriented systems, and a catalogue of environments for process-oriented pro-
gramming.

Chapter 3 describes a number of real-world examples of process-oriented software,
giving details on the contexts of their construction and the more interesting aspects of
their design.

The design patterns identified from the case studies are drawn into a pattern lan-
guage in chapter 4, which describes each pattern in a common format, with a discus-
sion of its applicability and examples of its use in the case studies.

Chapter 5 discusses some possible enhancements to process-oriented environments
to support specific patterns.

Some possibilities for the future of process-oriented programming environments—
and process-oriented programming in general—are outlined in chapter 6.
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Chapter 7 gives a “worked example” of the application of process-oriented design
to an embedded system, showing how the pattern language can be used to design and
reason about a complete application, and concludes with an overview of the outcomes
of this work.

1.2 Conventions

The most common types of cross-reference between sections will be indicated as fol-
lows:

• ? Case Study is a reference to a case study described in chapter 3;

• . Pattern is a reference to a pattern described in chapter 4;

• ◦ Pattern is a reference to a well-known pattern from a different programming
style, many of which are described in a process-oriented context in section 4.5.

The definitions of many of the terms used in this work are listed in the index start-
ing on page 198; the corresponding term will be marked in italics on the page refer-
enced.

Most of the example code in this work will be given in an extended version of the
occam-π programming language (section 2.3.2), a language designed specifically to
support process-oriented programming. However, an attempt has been made to avoid
the use of occam-π-specific facilities, in order to make it easier to translate the examples
for use in other process-oriented environments. (The programmer will find that many
of the examples can be expressed more succinctly in other languages; occam-π was
chosen because it was the language of most of the case studies.)

For readers unfamiliar with occam-π, most language features operate as they do in
other block-structured languages such as Pascal. The syntactic feature most likely to
cause confusion is that “.” is used in names as a separator with no special meaning,
much as “_” is used in C-like languages. A line prefixed by “...” in a listing is a fold,
representing a block of code that is only described by a comment rather than being
shown; folds have been used to hide sections of code that are not relevant to the general
patterns being demonstrated.

occam-π, being a testbed for process-oriented language features, is something of a
moving target, and has changed considerably during the course of this work. The ver-
sion of occam-π used is approximately that implemented by KRoC at the end of 2009,
with a few extensions that have not yet been implemented: those described in chap-
ter 5; single-branch IF blocks [195]; buffered channels, specified by BUFFERED(n) CHAN

for n-buffering and BUFFERED CHAN for infinite buffering [196]; dynamically-sized ar-
rays [243]; and the templating mechanism designed by Jim Moores [141], allowing
PROCs to be parameterised by type. (Most of the code examples cannot therefore be
compiled using currently-available occam-π compilers, although their translation to
standard occam-π should generally be straightforward.)

For the example code in this work, redistribution and use in source and compiled
forms, with or without modification, are permitted under any circumstances.



Chapter 2

Background

2.1 Process-Oriented Programming

Process-oriented programming is a concurrent programming style derived from CSP
and the occam family of programming languages, where systems are built by compos-
ing concurrent processes. The term was in use by 1992 [261, 78], although with varying
definitions; process-oriented programming is therefore about twenty years old.

This section attempts to capture the fundamental ideas of process-oriented pro-
gramming by looking at five important aspects of the process-oriented approach: con-
currency, isolation, communication, composition, and reasoning.

2.1.1 Concurrency

Process-oriented programming is sometimes described as a technique for parallel pro-
gramming, but it is more accurately described as a technique for concurrent program-
ming.

Concurrency is a structuring tool. A concurrent programming environment allows
a problem to be broken down into a set of activities and the synchronisation relation-
ships between them, with the environment then performing the activities so as to sat-
isfy the relationships.

Parallelism is a performance tool. A parallel program is one in which multiple
physical resources (such as CPU cores) are used to perform several activities at the
same time. A concurrent program may be executed in parallel—but it does not have
to be; a concurrent program can be executed upon a single CPU by serialising or time-
slicing parallel activities.

The primary advantage of concurrent programming is that many problems can be
simplified by breaking them down into concurrent activities. For example, a webserver
must deal with network connections from a large number of clients at the same time,
and cannot predict the times at which requests will be received and response fragments
acknowledged. A webserver written without concurrency needs to explicitly track the
state of each of its network connections, resulting in complex code that is difficult to
write and verify. Using concurrent programming, each network connection can be
handled by its own activity: a simple program that only needs to deal with a single
network connection.

This sort of problem has irregular concurrency: there are a number of activities that

4



CHAPTER 2. BACKGROUND 5

must be performed, but the order in which they must be performed and the best way to
schedule them across physical computing resources must be determined at runtime. In
this case, this is because the webserver is responding to unpredictable external events
(network requests), but irregular concurrency may also have internal causes—for ex-
ample, chaotic interactions between agents in a scientific simulation.

This must be contrasted with problems that exhibit embarrassing parallelism, where
the problem can be broken down immediately into a set of activities that may be per-
formed in any order with no interactions between them. Data-parallel programming
environments (such as OpenMP [152]) concentrate upon such problems. Rendering
the Mandelbrot set is the classic example of an embarrassingly-parallel problem: each
output pixel can be determined independently, so a Mandelbrot renderer with M CPUs
can simply assign the Nth pixel to the N mod Mth CPU—this is called geometric distri-
bution of work.

Expressing an embarrassingly-parallel problem like this in a concurrent program-
ming environment is very straightforward. Furthermore, because the concurrent envi-
ronment can make scheduling decisions while the problem is being solved, it can often
do a better job than a simple geometric distribution. In this case, since different parts of
the Mandelbrot set take different times to render, distributing work geometrically will
result in some CPUs having more work to do than others; a concurrent programming
environment can balance load more effectively at runtime, producing a result more
quickly.

A secondary advantage of concurrent programming is, therefore, that the program-
mer does not generally have to worry about scheduling: it is up to the concurrent
runtime to schedule activities across the available computing resources in the most ef-
ficient way possible. Concurrent programs get parallel execution—as far as possible—
for free; the best way to improve the parallelism of your program is to express more
possibilities for concurrency. Concurrent programming is an especially good fit for
problems that have a high degree of natural concurrency such as simulations, games,
network servers and user interfaces.

In process-oriented programming, these concurrent activities are called processes
(section 2.2.1)—hence the term process-oriented programming, since a problem is decom-
posed into processes in much the same way that an object-oriented problem is decom-
posed into objects. “Process” is an awkward name for this concept, owing to confu-
sion with operating system processes, business processes and development processes
in many application areas—but we are stuck with it for historical reasons.

2.1.2 Isolation

While concurrent programming offers significant advantages, it is widely considered
to be very difficult. Concurrent programs built using the low-level features provided
by languages such as C and Java—threads, objects in shared memory, semaphores,
monitors, and so on—often suffer from problems such as race hazards and lock order
violations. As a result, many programmers try to avoid writing concurrent programs
entirely—an approach that is rapidly becoming impractical in the face of the increasing
popularity of multicore processors, GPGPUs and other parallel computing resources.

Proponents of process-oriented programming argue that this is wrong: concurrent
programming is not fundamentally difficult—after all, humans deal with concurrency
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in the real world all the time. The solution is to provide a higher-level set of concur-
rency facilities that prevent programs with these problems from being expressible.

Process isolation is one aspect of this solution. As many concurrency problems
stem from unsafe concurrent access to shared resources, process-oriented program-
ming environments use a shared-nothing policy: processes are isolated in memory from
each other, only interacting through the synchronisation objects (such as channels; sec-
tion 2.2.4) that they define explicitly. Isolation may be enforced by the compiler, by
the runtime system, or (in environments where neither of the two previous options
is possible) by programmer convention. Preventing processes from sharing memory
means that the classes of concurrency errors caused by concurrent aliasing (where two
processes access a shared object in an unsafe way) and incorrect locking are avoided.

2.1.3 Communication

If processes share no memory, they must instead interact by message-passing: when a
process wishes to synchronise or share data with another process, it must communicate
with it. The fundamental communication mechanism provided in process-oriented
programming environments is the channel (section 2.2.2), which provides both syn-
chronisation and communication of data between processes. Other synchronisation
objects provide more flexible facilities for coordinating multiple processes.

Writing programs in terms of explicit communication makes process-oriented pro-
gramming especially useful for distributed and non-uniform-memory systems: the
semantics of interprocess communication can be implemented relatively easily over
network links as well as through shared memory—although network interactions will
have very different performance characteristics. Mobile data (section 2.2.5) allows local
communication of data to be performed efficiently, falling back to copying for network
links.

The synchronisation objects used by processes must be explicitly defined, and a
process may use any number of synchronisation objects, with the ability to wait for
events upon multiple objects—that is, a process sends a message to a channel, rather
than directly to another process. This distinguishes process-oriented programming
from message-passing styles such as the Actor model (section 2.3.4), where each pro-
cess has a single “inbox” for messages. Distinguishing between processes and syn-
chronisation objects gives process-oriented programming environments considerable
flexibility: new types of synchronisation object can be defined, processes can operate
without direct knowledge of other processes, and processes can choose which of their
synchronisation objects they wish to pay attention to at any particular time.

The messages sent along channels are strictly defined by protocols, which describe
the formats of messages and which messages are possible in a particular state. This
allows the interfaces provided by processes (the sets of synchronisation objects and
patterns of synchronisation that they use) to be precisely defined, and means that the
code inside each process can be statically checked for conformance with the protocols
it uses—preventing another class of programmer errors.

2.1.4 Composition

Process-oriented design is a compositional approach: systems are built by connecting
processes together into a process network.
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Processes may be nested. A process may internally be implemented as a network
of subprocesses, meaning that the same design approach can be used at all levels of
scale within a program. In general, a process-oriented program starts as a single top-
level process, which is usually built as a parallel composition of subprocesses, some of
which themselves will have subprocesses, and so on. The same approaches to design
can therefore be used at multiple scales during the construction of a program.

To make this approach practical, processes’ individual behaviours must not change
when they are composed with other processes. This is achieved by isolation and pro-
cess interface enforcement. Where possible, this enforcement is performed at compile
time; this avoids the overhead of runtime checking, and the possibility of runtime er-
ror.

2.1.5 Reasoning

The primitive features of process-oriented programming environments are based on
the facilities provided by process calculi—especially CSP [101, 102], but with increas-
ing influence from the π-calculus [139]. It is therefore possible to automatically (or
manually) derive a process-oriented program from a CSP specification, or vice versa,
which makes it possible to reason formally about the behaviour of programs—either
using manual techniques, or with automated model-checking tools such as FDR [84].
In particular, it is possible to automatically verify (in simple cases, for now) that a
process-oriented program is a valid implementation of a CSP specification—which
makes process-oriented programming an attractive approach for developing depend-
able software.

However, this is not to imply that you need to know CSP in order to take advan-
tage of process-oriented design. Formal techniques can be used to derive design rules
for process-oriented systems: constraints upon process behaviours and compositions
that guarantee programs following the rules will have particular formal properties,
such as freedom from deadlock (section 4.2.5). This makes design rules—and design
patterns—powerful tools for process-oriented software engineering: following design
rules allows the straightforward construction of correct concurrent programs. Further-
more, design rules provide further opportunities for static checking—process-oriented
tools can ensure that design rules are followed (section 2.5.2).

In addition, the formal basis of process-oriented programming primitives means
that carefully-designed process-oriented languages can be shown to have algebraic
equivalence laws [188]. These can be exploited by compilers to give greater opportuni-
ties for optimisation—for example, by translating them into fusion rules that describe
how processes may be rewritten to execute more efficiently with the same semantics—
and by programming environments to support assisted refactoring of code.

2.1.6 POP and Other Paradigms

It is important to note that process-oriented programming need not be used in isola-
tion: it is another technique for the programmer’s toolbox, to be combined with other
programming techniques as appropriate for the problem in hand. Process-oriented
programming environments are available for object-oriented, functional and multi-
paradigm languages (section 2.3). Distributed process-oriented systems can support
communication between systems written in different languages (section 3.3.5).
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A practical application may therefore use process-oriented programming as a co-
ordination technique, with different processes implemented in different languages—
and even with some processes simply being wrappers around existing non-process-
oriented libraries. This allows greater flexibility in choosing the right language for
the job, while ensuring conformance to common interfaces. Process-oriented program-
ming is similarly useful as a technique for systems that make use of specialised pro-
cessing hardware or hardware-software co-design.

2.1.7 Problems with POP

While there are many compelling reasons for using process-oriented programming, the
approach has a number of limitations that should be taken into account.

Some of these stem from the imperfection of existing process-oriented program-
ming environments. Many of these implement processes and communication in rather
inefficient ways, limiting the degree of concurrency that can practically be expressed
(section 2.3.1). Support for the basic process-oriented facilities varies considerably,
with no single environment providing a complete set of fully-fleshed-out features (sec-
tion 2.2). Static checking features are a particularly spotty area at the moment, with
few environments providing anything beyond the very basics. Future advances in
process-oriented environments should alleviate some of these problems—but this will
necessarily be a slow process.

Other problems appear to stem from things that are fundamentally difficult within
the framework of process-oriented programming. The most frustrating for begin-
ners to process-oriented programming is usually the prevention—and, failing that,
diagnosis—of deadlock, in situations where design rules cannot be applied. (One so-
lution is to disallow designs that do not follow design rules entirely—but, in that case,
we need to develop a wider catalogue of design rules!) Error and exception handling
remains a weak area of the process-oriented approach, with techniques for dealing
gracefully with exceptional conditions still under active development [103]. Tracing,
debugging and tuning concurrent programs is awkward simply because of the inher-
ent difficulty of collecting data from and visualising arbitrary process networks.

Nonetheless, the process-oriented style has been extremely successful across a wide
variety of application areas—as the examples in chapter 3 demonstrate—and process-
oriented languages and techniques are today showing their worth for the program-
ming of multicore and distributed systems.

2.2 Basic Facilities

This section describes the primitive facilities of process-oriented programming: the fea-
tures that are found in multiple process-oriented programming environments. They
are not patterns, since they are always implemented the same way, and are imple-
mented by the programming environment rather than by the user; they are the com-
ponents out of which patterns are built.

For example, “Channel” is not a pattern in process-oriented programming; it would
be a bad idea to implement a channel yourself when your environment provides effi-
cient, correctly-implemented channels as a primitive. However, channels are consid-
ered to be a pattern in lower-level concurrent programming environments [156], and
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languages that only have channels consider barriers to be a pattern [145]; mobile pro-
cesses are a more recent example of the same kind of upwards migration [33].

Some of the patterns described later on may likewise become higher-level program-
ming facilities in the future; for example, . Farm is currently considered a pattern in
process-oriented programming, but libraries such as Python’s multiprocessing mod-
ule allow work-distribution problems to be specified at a higher level, with the details
of how the farm is implemented hidden entirely from the programmer.

2.2.1 Processes

In process-oriented programming, a process represents a flow of control. Processes are
isolated: a process’s internal state cannot be accessed directly by other processes. Pro-
cesses usually interact only by using the synchronisation objects (such as channels and
barriers) that have been made visible to them. Processes are therefore much like active
objects in object-oriented programming—objects with their own flow of control, inter-
acting with other objects only through the interfaces they provide [206].

A process differs from the usual object-oriented concept of an object in that it may
perform actions on its own, rather than waiting until another object invokes an oper-
ation upon it. This kind of passive behaviour can of course be implemented using a
process (. Client-Server)—with the advantage that a process can choose to ignore or
defer certain operations if it is not ready to handle them. A process can be used to rep-
resent a piece of data that has behaviours and motivations—a “selfish gene” approach
to computation [115].

Conceptually, it is useful to think of processes as being able to contain child pro-
cesses. A process is said to have a child process when the lifetime of the child process is
not allowed to exceed the lifetime of the parent (typically by having the parent wait for
all its children to exit before exiting itself). Since it is common to implement a process
as a sub-network of other processes, thinking of processes as being nested in this way
makes it easier to visualise the structure of a system during design and debugging—
although process-oriented runtime systems are not usually directly aware of parent-
child relationships between processes.

In terms of implementation, a process is a lightweight thread: it has some private
storage (called a workspace in occam, and often just a section of stack in other environ-
ments) and a processor context. Process-oriented runtime systems often make use of
cooperative scheduling in order to obtain lower context-switch times and better per-
formance, relying on the programmer to break up long-running computations with
synchronisation operations—which, in practice, happens naturally when the use of
concurrency is made sufficiently pervasive.

“Process” is a confusing name for reasons previously stated, and as a result differ-
ent environments use a variety of names for the same idea—for example, Go calls its
processes “goroutines”; many other languages call them something like “lightweight
threads”. In addition, occam uses the term “process” to refer to what here will be called
actions: the primitive operations out of which an occam program is composed. ALT, :=
et al. are examples of processes.

A process-oriented program typically starts off by running a single top-level pro-
cess with some predefined connections to the outside world. In order to get useful
work done, some mechanism is necessary to start more processes. Two such mecha-
nisms are common in process-oriented environments.
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PAR

foo ()

bar ()

baz ()

-- foo , bar and baz are now complete

Figure 1: Parallel composition

Parallel Composition

One of occam’s most striking features is that, unlike most programming languages, it
does not assume actions should be performed sequentially by default; the user must
explicitly specify SEQ or PAR for sequential or parallel composition.

SEQ takes a list of actions and performs each of them in turn; PAR takes a list of
actions and runs them all at the same time in new parallel processes, waiting for all of
them to finish before it finishes itself (figure 1).

PAR thus has essentially the semantics of CSP’s parallel composition operator. Many
other concurrent environments provide a similar primitive; for example, JCSP has a
Parallel class, CHP has a CSP-like || operator, and OpenMP has #pragma omp sections

and #pragma omp for [152].
This approach to parallel composition works well for relatively static systems in

which the structure of the process network is known at design time—that is, roughly,
those where the process diagram does not change while the program is running. In
these cases, the process diagram can be directly translated into a set of nested parallel
compositions. Classical occam used PAR not just to specify the process network inside
a program, but also to specify the static placement of processes across a network of
physical processors. PAR can also be used to parallelise an existing sequential loop,
which is convenient for data-parallel problems.

For more flexibility, parallel composition can be combined with recursion. Recur-
sive algorithms such as Quicksort can often be parallelised simply by replacing se-
quential composition with parallel composition.

Forking

In classical occam (section 2.3.2), parallel composition was the only mechanism pro-
vided for starting new processes. Parallel composition is convenient when parallel
processes are run in batches—that is, groups of parallel processes tend to start and end
at roughly the same time. In many applications, however, processes start and finish
at unpredictable times; for example, network servers that spawn new processes in re-
sponse to incoming connections, or simulations where processes represent agents that
may reproduce and die. These applications can be implemented using a fixed-size pool
of worker processes that sit idle until they are needed, but this is both awkward and
inefficient. Concurrency in these applications is more easily expressed using forking.

occam-π provides forking as an alternative to parallel composition [20]. In occam-
π, the FORK action takes another action as an argument; it creates a new process, run-
ning in parallel with the current process, that executes the provided action. FORK is
thus a lower-level facility than PAR, mapping directly to the runtime system’s internal
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PROC network.server (LISTEN.SOCKET listen)

WHILE TRUE

SOCKET sock:

SEQ

accept.connection (listen , sock)

FORK client.worker (sock)

:

Figure 2: Forking network server

REC PROC forker (CHAN ARGS in?)

ARGS args:

SEQ

in ? args

PAR

child.process (req)

forker (in?)

:

Figure 3: Simulating forking using recursion

primitive for starting a process.
FORK allows new processes to be started, but (unlike PAR) does not by itself provide

a way of waiting for child processes to finish. This is provided separately by occam-
π’s FORKING facility. A FORKING block keeps track of processes that are FORKed inside it;
all the forked processes must finish before the FORKING block itself finishes. A FORKING

block thus provides a forking context in which new processes may be started; the context
lasts as long as any of the processes contained within it are still running.

In occam-π, the entire program is implicitly wrapped in a forking context (allowing
FORK to be used alone), but the user may specify arbitrarily-nested forking contexts of
their own. At present, FORK creates the new process in the innermost forking context.
For some applications, it would be convenient to specify a context explicitly as part of
the fork operation, allowing processes to be forked in a context other than the inner-
most one [197]. An example would be a simulation in which an agent made use of an
internal forking context to consider multiple strategies in parallel, but was also able to
spawn new agents in the greater context of the simulation world.

With forking, it becomes possible to write programs that spawn processes at unpre-
dictable times. For example, the “serve one client with each thread” pattern familiar
from coarse-grained network server programming can be expressed easily using pro-
cesses [125, 236] (figure 2).

It is theoretically possible to simulate forking in an environment which only pro-
vides parallel composition, provided that it also supports recursion (which classical
occam does not), by writing a process which responds to each request sent on a chan-
nel by starting a new process in parallel with a recursive call to itself (figure 3). This
process is an example of a . Factory.

(In practice this would leak stack space, unless the environment were able to tell
that the last action this process performed was a parallel recursive call to itself and
reuse the process’s existing stack; by analogy with tail call elimination, this could be
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PAR

foo ()

bar ()

baz ()

Figure 4: Parallel composition using PAR

FORKING

SEQ

FORK foo ()

FORK bar ()

FORK baz ()

Figure 5: Parallel composition using FORKING

called tail parallel elimination. This optimisation may be useful in an environment where
parallel composition was widely used to implement recursive parallel algorithms; it is
not common enough in occam-π to be worth implementing.)

Forking along with forking contexts can be used to implement parallel composi-
tion; the programs in figures 4 and 5 are equivalent. Both start three child processes,
then wait for them all to finish; in neither case is a guarantee made about which order
the processes will actually begin to run in. (The knowledge that all three processes are
being started at the same time in the parallel composition example may be useful to a
runtime system that attempts to batch processes together at creation time [184], but a
smart compiler could transform the second program to extract the same information.)

This duality means that many environments provide forking without parallel com-
position; for example, the X10 programming language provides finish and async prim-
itives equivalent to FORKING and FORK [62]. However, many provide a forking operation
without forking contexts; Go has only a go operation, with the idiom being to use chan-
nel communication to signal completion where necessary (which is awkward when
many processes need waiting for) [92, 91].

2.2.2 Channels

In the most general sense, a channel is a connection between processes, along which
messages may be sent. Channels are the most common communication and synchro-
nisation mechanism provided in process-oriented environments.

input 
end

output 
end

The simplest form of channel is that provided by classi-
cal occam, where it is the only supported way for processes
to interact. An occam channel is directional, with an input
end, to which messages may be sent, and an output end,
from which messages may be received. Each end may be used by at most one process;
this is enforced at compile time by static checking.

A process attempting to send to a channel will be blocked until a corresponding
process attempts to receive from the other end of the channel—and vice versa: a pro-
cess attempting to read will block until a process writes to the other end. A channel
is therefore a mechanism for both communication (passing data between two processes)
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and synchronisation (coordinating the control flow of the two processes).
The messages that may be sent on a channel are defined by a protocol; the chan-

nel’s type indicates what protocol is used for communication on that channel. A sim-
ple protocol contains a single data type (such as INT), meaning that the channel carries
values of that type. occam also provides sequential protocols which describe messages
consisting of several values (for example, a “coordinate” protocol might be defined
as INT; INT), and variant protocols which allow choice between several different types
of message based on an initial tag. (More flexible ways of defining protocols will be
explored later.)

The semantics of occam channels are based on those of CSP events, which have the
same synchronisation behaviour. A channel is modelled in CSP as a set of events, with
one for each possible message that may be communicated across the channel. To send
to a channel, a process engages in only the event corresponding to the value it wishes
to send; to receive from a channel, a process offers a choice between all the channel’s
events, and infers the value that was sent by looking at which event completes. (Bar-
riers (section 2.2.3) provide a more direct equivalent of CSP events in process-oriented
languages.)

Because channels are so widely implemented, a number of extensions to this basic
behaviour are provided by different implementations.

Buffering

Buffering is the most common extension to channel semantics, provided in some form
by nearly every environment other than occam-π.

occam channels are synchronous: they have no internal buffer. Communication be-
tween two processes requires both processes to engage simultaneously upon the chan-
nel; once this occurs, the runtime system moves data directly from the sending process
to the receiving process.

A buffered channel contains an internal buffer which can hold messages during com-
munication. When a process sends a message to a buffered channel, the message is
added to the buffer, and the process is immediately able to continue; the blocking be-
haviour of synchronous channels has been removed. When a process receives from
a buffered channel, if a message is available it will be removed from the buffer; if no

Buffer

buffered channel

Figure 6: Simulating a buffered channel
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CHAN SIGNAL uc:

BUFFERED CHAN SIGNAL bc:

PAR

SEQ

bc ! SIGNAL

uc ! SIGNAL

PRI ALT

bc ? SIGNAL

trace.sn ("1")

uc ? SIGNAL

trace.sn ("2")

Figure 7: Demonstrating buffering delays

message is present, the receiving process will be blocked until a message is sent.
Buffered channels may be simulated in an environment that provides only syn-

chronous channels by using a buffer process (figure 6). See the . Buffer pattern for
more discussion of the different behaviours that buffers may have; environments with
buffering often provide a choice of buffering behaviours for channels.

Note, however, the synchronisation behaviour of a buffer process may be subtly dif-
ferent from a real buffered channel, depending on how the semantics of buffered chan-
nel communication are defined. One possibility is that when an output to a buffered
channel completes, the sending process can guarantee that the output end of the chan-
nel is ready—that is, a receiving process will certainly be able to read from it immedi-
ately. This is the buffered channel guarantee.

The effects of this are visible in programs that care about the ordering of messages
received from different channels. For example, the program in figure 7 will always
print 1 owing to the buffered channel guarantee—the buffered channel bc becomes
ready before the unbuffered channel uc. (Even if the second process has not had a
chance to run, when it is scheduled as a result of the uc communication, it must con-
sider all the channels in the choice and realise that bc has become ready.) If the buffered
channel is implemented by a conventional process, it may be possible for the message
sent to uc to be delivered to the receiving process first. In order for a buffer process to
provide the guarantee, it would need cooperation from the scheduler (for example, if
it could ask to be run at higher priority than all other processes) [203].

For a more practical example, imagine replacing uc with a “tick” event that is being
used to regulate transitions between timesteps in a simulation. Without the guarantee,
the message may be received in a different timestep from the one in which it was sent.

Buffered channels only provide one-way synchronisation: the receiving process
knows, when it receives a message, that the sending process sent it at some time in
the past, but the sending process cannot tell anything about the control flow of the
receiving process. To get two-way synchronisation when only buffered channels are
available, it is necessary to use a second buffered communication in the opposite di-
rection as an explicit . Acknowledgement.

In practice, one-way synchronisation is often sufficient; for example, in the ma-
jority of . Client-Server and . Pipeline systems. This allows free choice between
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synchronous and buffered channels for many applications; this is useful when con-
structing distributed applications, in which synchronous channels are most efficient
for communications between processes on the same shared-memory host, because data
does not need to be copied to and from a buffer, but asynchronous channels are more
efficient for communications over a network, where the higher latency makes acknowl-
edging receipt of each message very expensive [201].

A process can use a buffered channel to send a message to itself. For example, a
process responsible for delivering network messages could accept new messages us-
ing a buffered channel, which would then represent the queue of messages which it
has to deliver. When a message cannot immediately be delivered, the process could
resend it to its input channel, which would place it on the back of the queue. When
this technique is used, it is important to ensure that sending a message to the chan-
nel can never block (by using a discarding or infinite buffer, for example); otherwise
the process would be in danger of deadlock. (This self-signalling technique is used to
allow choice over signals in Unix programming, using a signal handler that writes a
message to a non-blocking pipe [38].)

Sharing

Many environments allow a channel end to be shared between multiple processes.
Shared channel ends are one of the extensions to classical occam provided by occam-
π [21].

Either or both of the input and output ends of a channel may be shared. When the
input end is shared, several processes may send messages to the channel. When the
output end is shared, several processes compete to receive messages from the channel;
each message will only be delivered to one process. (This is distinct from broadcast chan-
nels, which deliver the same message to several processes, with all processes engaging
in each communication; see section 2.2.3.)

occam-π has explicit sharing: when a process wishes to communicate upon a shared
channel end, it must first claim it using a CLAIM block. Inside the CLAIM block, the process
has exclusive access to the channel end, and can use it for several communications
before releasing it. Shared channel ends have a different type (SHARED CHAN T) from
regular channel ends (CHAN T); inside a CLAIM block, the SHARED qualifier is removed.
CLAIM blocks may not be nested, in order to prevent lock ordering problems.

Most environments, however, provide implicit sharing: any process that has access
to a shared channel end may use it for communication at any time, without needing
to claim it first. Indeed, in some environments—for example, Go—all channels are im-
plicitly shared; there is no such thing as a point-to-point channel. If preventing sharing
through static checking is not feasible, then making all channels implicitly shared al-
lows simpler communication semantics than preventing unsafe sharing using runtime
checks.

In practice, both types of sharing are useful in different circumstances. Explicit
sharing allows a process to ensure that the communications it performs while the chan-
nel is claimed will not be intermingled with communications from other processes
on the same shared channel. This often allows very simple channel protocols to be
used—for example, the standard output stream in an occam-π program is simply a
SHARED CHAN BYTE, and mixing of output from multiple processes is prevented by hav-
ing them claim the channel while printing a message. Similarly, the channel bundles
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used to communicate with server processes (. Client-Server) are explicitly shared; this
allows a client to perform multiple operations atomically upon a server without fear
of being interrupted.

However, there is frequently no need to prevent intermingling of messages from
different processes—for example, when a shared channel is being used to collect the
results from several worker processes (. Farm). In these cases, since there is no need for
an explicit claim step before channel communication can take place, implicit sharing
allows more concise code, and more efficient runtime implementation (since channel
communication algorithms can be designed to allow implicit sharing [182]).

The effects of explicit sharing can be obtained by using an implicitly-shared channel
to pass the end of a private communication channel (. Private Line).

Directionality

Pairs of processes that need to communicate in both directions with each other are very
common—for example, clients that make requests to servers, and receive responses
(. Client-Server). As a result, many environments support some form of bidirectional
channels, which permit messages to pass along the channel in either direction.

While occam-π’s channels are unidirectional, it does provide channel bundles (or
channel types), which combine several channels into a single data type, allowing them
to be allocated and their ends passed around as a group [34, 20]. Bundling together
a pair of channels in opposite directions to allow bidirectional communication is by
far the most common use of channel bundles in occam-π programs—although this is
somewhat inconvenient since the protocols for the two directions must be specified
separately.

If communication may happen in either direction over a channel, it does not re-
ally make sense to talk about input and output ends. Sing#’s bidirectional channels
have “importing” and “exporting” ends. occam-π’s channel bundles have “client”
and “server” ends, reflecting their most common use. HTML5’s bidirectional channels
simply have “1” and “2” ends [238].

Runtime support for bidirectional channels is usually fairly straightforward to imp-
lement—channel communication algorithms are often inherently bidirectional—but
few languages have really comprehensive support for bidirectional communication;
in particular, facilities to enforce communication protocols over bidirectional channels
are usually lacking, with Sing# being a notable exception (see section 5.3).

2.2.3 Barriers

Just as channels allow synchronisation between pairs of processes, barriers allow syn-
chronisation among arbitrary numbers of processes.

A barrier keeps track of a set of enrolled processes. When an enrolled process syn-
chronises upon the barrier, it is blocked until all the processes enrolled upon the barrier
are also trying to synchronise. Once this happens, the barrier completes, and all the en-
rolled processes are allowed to continue. (This is essentially equivalent to a CSP event,
with the enrolled set being the processes that have the event in their alphabet.)

Barriers are often used to provide a set of processes with a shared sense of time, by
enrolling all the processes upon a barrier and having them synchronise at the end of
each timestep (. Phases, . Clock).
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PROC barrier ([] CHAN SIGNAL users?)

WHILE TRUE

SEQ

PAR i = 0 FOR SIZE users

users[i] ? SIGNAL

-- Now all users are blocked.

PAR i = 0 FOR SIZE users

users[i] ? SIGNAL

:

PROC sync (CHAN SIGNAL user!)

SEQ

user ! SIGNAL

user ! SIGNAL

:

Figure 8: Simulating a barrier with a process

Processes may generally enrol upon and resign from the barrier after the barrier has
been created, which makes barriers useful for managing dynamic pools of processes.
Barriers are also used to implement forking contexts: the parent process creates a bar-
rier and enrols upon it. It then enrols each child process on the barrier as it is started;
as each child process finishes, it resigns from the barrier. Finally, the parent process
synchronises upon the barrier. When the synchronisation completes, the parent can be
sure that all the child processes have finished (since otherwise they would be enrolled
on the barrier but not attempting to synchronise).

A very simple barrier can be simulated easily using a set of channels and an “or-
acle” process (figure 8; an example of . Acknowledgement). Adding dynamic en-
rolment and support for choice between multiple barriers is not much more compli-
cated [255]—although, in practice, real runtime systems implement barriers in a way
that allows more efficient scheduling on multicore systems [184, 254].

Conversely, it is possible to implement a channel as a barrier, upon which the two
communicating processes are enrolled, and a variable to store the value being com-
municated. To send to the channel, you write the value into the variable and then
synchronise twice on the barrier; to receive from the channel, you synchronise on the
barrier, read the value from the variable, then synchronise again. (The second synchro-
nisation ensures that the sender does not overwrite the stored value before the receiver
has a chance to read it; this is an example of . Phases.)

One advantage of this approach—used by CHP, which in turn implements barriers
in terms of transactional memory [51]—is that implementing choice between barriers
gets you choice between channels for free, which is not the case for barriers imple-
mented in terms of channels. Another advantage is that this approach can be easily
extended to provide broadcast channels, in which messages are distributed to multiple
receivers, simply by having more than one receiving process enrolled upon the barrier.
(This matches the effect of using CSP events to simulate channels.) This approach is
used in ? Occoids to distribute control messages to multiple processes on the same
host of a simulation.

A rarely-implemented extension is partial barriers, which complete “early” when
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a fixed number of processes enrolled are synchronising, rather than all of them. For
example, a 5-partial barrier would block synchronising processes until five processes
were attempting to synchronise, at which point it would release just those five [241].
(Whether it immediately continues to collect another five, or waits for the first five to
complete, depends on the implementation.) Partial barriers can be used in applica-
tions that wish to form fixed-size batches of work, or that have problems that require
N resources from a pool—for example, allocating dedicated processing hardware to
problems that require N processors to solve.

2.2.4 Synchronisation Objects

Channels and barriers are both types of synchronisation object: facilities that can be used
to coordinate the control flows of multiple processes. Environments may provide addi-
tional synchronisation objects. For example, occam provides TIMERs, which can be used
to synchronise processes with hardware clocks; JCSP provides buckets, which block a
group of processes until another releases them [250], and CREW locks, which mediate
access to a shared resource with concurrent-read-exclusive-write semantics [251].

Some common features in process-oriented environments apply to more than one
type of synchronisation object.

Choice

The idea of choice between multiple events—waiting for one of several synchronisa-
tion objects to become ready—is common at the operating system level (for example,
Unix select or Win32 WaitForMultipleObjects), but relatively rare in lightweight
concurrency systems, perhaps because it can be difficult to implement in a way that
is both correct and efficient. However, choice is one of the basic facilities of CSP, and
is nearly ubiquitous in languages derived from it. Choice facilities in process-oriented
languages are usually modelled on—or, at least, very similar to—those provided in
occam.

occam’s choice primitive is ALT, which takes a list of events (called guards) to choose
between, along with actions to perform when one of them becomes ready. If more than
one event is ready, the runtime system is free to choose arbitrarily between them. The
PRI ALT primitive provides prioritised choice, which is the same except when more than
one event is ready, in which case the events will be considered in the order they were
specified.

If no event is immediately ready, the process will block. The primitive SKIP, which
is always ready, can be specified as the last guard in a PRI ALT if the programmer wants
to avoid blocking (see . Polling).

How this translates into other environments varies; when a process-oriented envi-
ronment is provided as a library for an existing language, it can be difficult to find a
convenient syntax for choice. Many (such as JCSP) follow the select model, where
a “choice” operation returns an index into a list of guards. CHP, on the other hand,
provides a choice operator that can be used to choose between any arbitrary set of
processes; everything is a guard.

In practice, most environments implement prioritised and non-prioritised choice
the same way (that is, they always use prioritised choice); implementing prioritised
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choice is generally more difficult than non-prioritised choice, but their runtime com-
plexities are similar. Environments derived from Newsqueak (section 2.3.3) are excep-
tions in that they use a random number generator to actually make a random choice
when multiple events are ready.

The downside of all choice being (potentially) prioritised is that the programmer
needs to carefully consider the order in which events are presented for each choice. A
process handling requests from several clients will give priority to clients earliest in
its list; this may lead to clients later in the list being starved if early clients tend to be
ready. A simple cure for this problem is to rotate the list by one place each time the
choice happens (move the first element to the end of the list); the “fair ALT” idiom is
common in occam, and in environments such as JCSP where choice is represented by a
long-lived object capable of keeping track of a position in the list, a fair choice operation
is often provided directly.

An alternative to choice—and another reason why many concurrent environments
do not provide a choice operation—is to use shared channels. For example, rather than
having N producers connected to a single consumer using N point-to-point channels,
with the consumer making a fair choice between them, you could simply have all the
producers sending messages to a single shared channel.

With this approach, the runtime system becomes responsible for ensuring fairness.
In addition, the code is usually considerably simplified. The simplification is especially
striking when the network topology is complex—for example, the grid of cells in a
cellular automaton is very awkward to wire up using point-to-point channels (there
must be a pair of channels in each of eight directions from each cell), but relatively
straightforward when using shared channels (the . Location pattern) [203].

Using shared channels is often more efficient, too; competing for a shared chan-
nel end is usually cheap compared to making a choice across many events (sending
a message becomes O(1) rather than O(N) in CCSP [184]). The downside is that this
approach only works for systems where all the producers send messages using the
same protocol (i.e. all the input channels have the same type), and where the consumer
never needs to refuse messages from any particular consumer; if these conditions are
not met, choice will be necessary.

While a process-oriented environment may provide several different kinds of syn-
chronisation object, it may not necessarily support choice across all of them. For ex-
ample, occam-π provides channels, barriers and timers, but does not allow choice
over output ends of channels, nor over barrier synchronisations. This is frequently a
cause of frustration for occam-π programmers: there are many situations where having
choice over output ends and barriers would be useful (for an example, see . Polling).

One reason for this is that it would be possible to specify conflicting prioritised
choices if choice could be made over more than one “end” of a synchronisation object
(figure 9). The conflict here is over which of the two channels should become ready
first; the priorities specified in the two processes are not consistent. This cannot be de-
tected at compile time, and is unfeasibly expensive to detect at runtime. One approach
would be to define the semantics of choice such that an arbitrary choice could be made
when priorities conflict. An alternative would be to do away with PRI ALT and instead
attach priorities to the synchronisation objects themselves rather than the choices; this
would enable an unambiguous choice to be made in any situation.

Some environments provide conjunctive choice, where it is possible to wait for a
combination of events to become ready—for example, “both A and B”. This appears
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CHAN SIGNAL c, d:

PAR

PRI ALT

c ! SIGNAL

SKIP

d ! SIGNAL

SKIP

PRI ALT

d ? SIGNAL

trace.sn ("1")

c ? SIGNAL

trace.sn ("2")

Figure 9: Conflicting prioritised choice

to have advantages in terms of composability of processes, but resolving conjunctive
choice—especially over multiway events—can be very expensive; the consequences of
adding conjunctive choice to a process-oriented environment are not yet fully under-
stood [54].

Poison

Shutting down or resetting a process-oriented system has long been understood to be
a problem—how do you ensure that all processes shut down safely, without causing
deadlock? Many process-oriented environments provide poison as a solution to this
problem. Poison was originally proposed as a pattern for use in occam [253], but it
was pioneered as a library feature in C++CSP [57], and is now offered as a built-in
feature in many process-oriented environments.

In systems supporting poison, any synchronisation object may be poisoned. When-
ever a process attempts to use a poisoned synchronisation object, it will instead receive
an exception. In response to this, it should poison all the other synchronisation objects
it has access to, and then shut down cleanly. Poison thus spreads from process to pro-
cess: poisoning any synchronisation object will result in the entire system being shut
down.

As the programmer may not always want such a drastic response—they may want
to only shut down part of the system, prior to restarting it—some mechanism is nec-
essary to limit the spread of poison. For example, JCSP keeps track of the “strength”
of poison applied, with each channel having an “immunity level”; this allows a sub-
network to be given a weak poison, isolated from the rest of the network by poison-
filtering channels with higher immunity levels [220, 247]. An alternative would be
to allow processes to be assigned to process groups, beyond which poison could not
travel.

The major problem with implementing poison is choosing an appropriate response
to receiving a poison exception, since it is not always straightforward to work out
which synchronisation objects a process has access to. At present, programmer inven-
tion is usually required for each poisonable process; in the future, with better compiler
support, it may be possible to determine poisonable objects automatically.
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Extended Synchronisation

If a synchronisation object supports extended synchronisation, then it allows the pro-
grammer to specify an action that will occur immediately before it becomes ready, but
before its readiness is signalled to other processes.

Extended synchronisation is implemented most widely for channels. When an ex-
tended input is performed on a channel, the action occurs while the sending and re-
ceiving processes are still blocked by the communication; neither can continue until
the extended action finishes.

Extended channel communication can be used to write . Glue processes that do
not introduce an additional place of buffering. It can also be used to avoid the need for
. Acknowledgement: rather than receiving a request, performing an action and then
sending an acknowledgement, a process can perform its action as part of an extended
input, the completion of which signals the completion of the action. (This approach
halves the number of synchronisations necessary in . Client-Server calls that do not
return a result.)

When an extended synchronisation is performed upon a barrier, the action runs
after all processes are attempting to synchronise, but must finish before any of the pro-
cesses are released. One use for extended barrier synchronisation is the coordination of
multiple barriers in a distributed system: each host has a local barrier, with an extended
action that performs a network barrier synchronisation. This allows processes on each
host to do a single efficient local synchronisation, with the more expensive network
synchronisation only occurring a single time once all the processes have synchronised.

The idea of extended rendezvous comes originally from Ada, where a task (a pro-
cess) is allowed to execute a procedure in the context of another task while it is held
safely in an extended rendezvous [112]—an approach to process interaction similar to
the call channels proposed in occam 3 [34].

2.2.5 Mobility

Early process-oriented environments such as classical occam supported a very static
programming style, in which the visibility of data and synchronisation objects was
decided at the time of process creation. Mobility features in more recent environments
allow more dynamic programs to be constructed, where the ownership of resources
and the structure of the process network can change at runtime.

Many errors in concurrent programs stem from unsafe aliasing, where several pro-
cesses have access to a shared resource that cannot safely be modified by multiple
processes in parallel. Preventing unsafe aliasing is an important technique in the engi-
neering of correct concurrent programs, and formal techniques exist to ease reasoning
about aliasing; for example, ownership types extend type systems to track the contexts
in which objects are visible [63, 42].

Single-Owner Types

Key to mobility is the idea of single-owner types, which allow the environment’s type
system to enforce that a resource may only be visible to one process at a time. The
programmer can therefore use a single-owner reference as a token; holding the refer-
ence means you have the right to use the resource. If a resource cannot be safely used
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by more than one process in parallel, it should be declared with a single-owner type;
there will then only ever be at most one reference to the resource, which must be ex-
plicitly communicated between processes as required—meaning that creating aliases
of the resource becomes impossible.

Channel communication for single-owner resources has special semantics: sending
a single-owner resource over a channel results in the sending process losing its ref-
erence to it. In some environments, such as occam-π and C++CSP, the type system
allows this to be enforced by the compiler. In others, such as JCSP, the programmer
must ensure that the reference is not accidentally duplicated; the usual idiom is to set a
local reference to null after it has been communicated away. (The same semantics ap-
ply in other situations; for example, forking off a new concurrent process that takes an
argument of a single-owner type is usually semantically equivalent to communicating
the argument’s value to the new process over a channel.)

As single-owner resources must be able to be communicated between processes—
ideally without the cost of actually copying the data they contain—they must be al-
located in an area of the heap that is visible to multiple processes. Sing# calls this
the exchange heap; objects are marked as single-owner by qualifying their type with
in ExHeap [79]. occam-π calls this mobile space; objects are marked as single-owner
with the MOBILE type qualifier [32].

If information stored in a single-owner resource needs to be used in two processes
concurrently, it is necessary to make a copy of the resource. Most environments pro-
vide some facility for cloning objects; occam-π has the CLONE operator, for example,
whereas in Java and Python the usual standard library cloning facilities may be used.

An alternative to copying is to provide a facility to transform (without copying)
a read-write single-owner resource into a read-only multiple-reader resource that can
safely be used by multiple processes. Similarly, facilities could be provided to divide
a large single-owner resource into multiple smaller single-owner resources (and later
recombine them). (Separation logic is a formalism that permits reasoning about the
correctness of programs with resources that may be divided and combined in this way,
and where resources’ writability may change at runtime [180].)

Single-owner types permit a number of interesting compiler optimisations. For
example, if the compiler knows that a particular process holds the only reference to a
shared resource, it can choose to reuse the resource when it knows that it is no longer
needed, rather than freeing it and allocating a new resource. Choosing data structures
that permit this kind of reuse—for example, cooperating with the memory allocator to
allow variable-sized objects to have their sizes rounded up—may offer performance
advantages for programs making heavy use of single-owner types.

Mobile Objects

Mobile objects are those that can be communicated by reference between different pro-
cesses. Process-oriented environments typically support a variety of mobile objects,
with the simplest form being mobile data [32]—data objects that are only accessible
through a single-owner reference. For example, mobile arrays are commonly used
as drawing canvases that can be passed around safely among the various processes
that make up a concurrent graphical environment, with each process drawing its part
of the display before passing the canvas on [201].

Flexibility in the construction of process networks is provided by mobile channels,
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which make channel ends first-class objects that can be passed between processes [20].
Unshared channel ends must by necessity be single-owner types, whereas shared chan-
nel ends can be aliased (since they may be used safely in parallel). Channel end mo-
bility makes it possible to construct and rewire process networks at runtime. This is
especially useful where the structure of the process network needs to change to re-
flect that of a system or data structure it is modelling—for example, the RMoX USB
stack dynamically constructs a process network that mirrors the tree of USB devices
connected to the computer [24]; process-oriented simulations construct connections
between interacting agents using mobile channels [10].

Other synchronisation objects may similarly be made mobile; occam-π provides
mobile barriers, with each mobile barrier reference representing a single enrolment to
a barrier [254]. Enrolment to barriers in occam-π can therefore be controlled by the
scoping of references to mobile barriers—a process enrolled on a barrier can pass its
enrolment atomically to another process simply by communicating it across a channel.
In order to enrol a new process on a barrier, the CLONE operator can be applied to a new
barrier reference; the barrier will then not be able to complete again until the cloning
process has handed off its new (duplicate) reference to another process to use.

occam-π’s semantics for mobile barriers are still being refined; in particular, it is
difficult at the moment to write a process which safely hands out barrier enrolments—
such as a . Factory creating enrolled processes—without being enrolled on the barrier
itself. One possibility is to have separate types for the barrier and for its enrolments; the
barrier could be used to create new enrolments without needing the enrolling process
to itself be enrolled.

Some environments provide mobile processes, which make processes themselves into
first-class single-owner objects [33]. To create a mobile process reference, a running
process must suspend itself; the reference then represents the complete state of the sus-
pended process, including any nested processes inside it, and references to synchroni-
sation objects outside. An operation is provided to resume the process later. (Mobile
processes can usually not be cloned, since they may themselves contain single-owner
references.)

There is a duality between mobile process references and mobile channel ends.
Rather than choosing to suspend, a process may instead choose to wait for a chan-
nel communication before continuing; the other end of the channel can then be passed
around to control the process’s resumption in the same way that the mobile process
is. Mobile processes, however, are currently useful in distributed systems where the
runtime system is not itself able to migrate processes between different hosts: a process
can be explicitly moved to a different host by sending it there as a mobile process.

Implementing mobile processes requires considerable cooperation from the com-
piler in order to identify resources and nested processes held inside the process [163].
This is especially the case when mobile process references may be communicated be-
tween hosts in a distributed system—a problem comparable in complexity to that of
migrating tasks in a distributed operating system [135]. Mobile processes can be sim-
ulated in environments that do not support them using the ◦ Memento pattern [87]:
when a process wishes to suspend itself, it should pack up its internal state into a data
structure and then exit, and be able to read the data structure on startup to resume
from the same point [201].
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Figure 10: A family tree of process-oriented environments

2.3 Process-Oriented Environments

An environment is a context in which process-oriented programs can be constructed,
consisting of a programming language, a set of libraries, a compiler, and a concur-
rent runtime system. The descriptions here will concentrate upon environments with
features specifically designed to support the process-oriented style, but some form of
process-oriented programming is possible in many concurrent environments owing to
the wide availability of basic features such as channels. A variety of such environ-
ments exist (see figure 10, which is neither complete nor to scale in terms of time, and
figure 11); this section describes several of the most influential or interesting.

A programming language may (occam) or may not (Java) have features that ex-
plicitly support process-oriented programming. Some modern languages (such as
Haskell) are sufficiently expressive that these features can be provided by a library as
an “embedded domain-specific language” [109], with most of the advantages of pro-
viding them as language features directly. As such, an additional distinction will not
be drawn here between environments with languages that do and do not have process-
oriented features, although unusual language features that would be good candidates
for EDSL features in more expressive languages will be noted.

Some process-oriented techniques can be applied even in environments that sup-
port none of the usual process-oriented synchronisation features. For example, the
. Client-Server pattern describes a set of formally-proven design rules for interactions
between “passive” processes that have OO-object-like behaviour; a concurrent client-
server system can be built using objects rather than processes and the design rules still
hold (see section 3.9.4 for an example).

2.3.1 Implementing Processes

An ideal process-oriented programming environment would allow the programmer
to have as many processes as they like, with the cost of communication between the
processes being zero. This is, of course, impossible. A more practical goal is to make
process-oriented programming directly comparable to object-oriented programming:
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Figure 11: Features provided in process-oriented environments



CHAPTER 2. BACKGROUND 26

spawning a process should be as cheap as creating a new object instance, and com-
municating between two processes should be as cheap as calling a method. Practical
process-oriented programs can make use of very large numbers of processes; for ex-
ample, the ? Occade demos use thousands of processes, and some of the ? TUNA and
? CoSMoS simulations hundreds of thousands.

Process-oriented environments implement processes in a number of different ways.
The most common approach is to use operating system threads to represent processes,
and allow the operating system to schedule them across CPUs—the thread-per-process
approach. However, operating systems usually place limits on the number of threads
that a program can have (typically no more than a few thousand), the memory over-
head per thread is usually on the order of a few kilobytes, and the cost of switching
between threads is significant, making communication inefficient.

High-performance process-oriented environments such as occam-π, Go and CHP
therefore use lightweight processes, where the runtime system manages the state of each
process, scheduling processes explicitly across a pool of operating system threads to
achieve parallel execution. Lightweight processes usually use cooperative scheduling,
where a process cannot be interrupted until it calls into the runtime system. (Operating
system threads, by contrast, are usually preemptively scheduled; the operating system can
forcibly deschedule a thread if it has been running for too long.) Cooperating schedul-
ing allows very low per-process memory and CPU overheads; the CCSP runtime sys-
tem for occam-π leads the pack here, with 8 machine words of memory overhead per
process and communication times in the tens of nanoseconds [184]. Communication
is cheap because sending a message simply requires a context switch to the receiving
process.

A few process-oriented environments use a task-per-process approach, where each
process is represented by an operating system process. This makes communication
very expensive and places severe limits on the number of processes possible—but al-
lows operating system memory protection to be used to isolate processes from each
other. This approach is useful when an application makes use of unreliable external li-
braries, since a library call that causes the operating system process to crash can be de-
tected and contained. It is possible to consider the Unix operating system as an exam-
ple of a task-per-process environment, since Unix provides processes, pipes (buffered
byte channels) and choice via the select system call. The python-csp library makes
use of Unix facilities in this way to allow robust process-oriented programming [143].
The RMoX and Singularity operating systems can also be considered task-per-process
environments, since their tasks are lightweight processes.

A final approach is to provide dedicated hardware for each process—the CPU-per-
process approach. Historically this has been used by systems that compile a process-
oriented language down to programmable hardware such as an FPGA, with Handel-C
being a notable example; while it offers very high performance—especially in terms
of latency—the downside is that even more severe limits are placed on the number of
processes possible. The XMOS XS1 architecture (section 2.3.2) is designed specifically
to support the CPU-per-process approach: each XS1 CPU core supports eight hardware
threads, with multiple cores per die allowing the construction of small (but practical)
process-oriented systems that effectively have a dedicated CPU for each process [134].
This architecture is designed to combine the flexibility of process-oriented software
design with the exceptionally low latency of FPGA hardware.
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2.3.2 occam

The occam family of programming languages have been the most influential process-
oriented environments to date. occam development has proceeded in two distinct
phases, the first—which is usually referred to as classical occam —in the commercial
sector, and the second in the research sector.

Classical occam

The occam family consists of block-structured, indentation-delimited procedural lan-
guages in the Algol tradition. occam started life as the only supported programming
language for the INMOS Transputer, a concurrent microprocessor with a stack-based
architecture and hardware support for concurrency. Not only did the Transputer pro-
vide dedicated hardware for scheduling, it provided links that allowed multiple Trans-
puters to be connected into a larger system, with channels carried efficiently between
chips. At launch time, a single Transputer provided world-leading computational per-
formance; by using links, supercomputer performance could be obtained at budget
prices.

occam 1, developed with the Transputer in the early 1980s, was primarily inspired
by the original 1978 version of CSP [101]. It provided synchronous channels that carry
single values (CHAN), with input and output communications (c ? x and c ! x); choice
between input communications (ALT); and parallel composition (PAR) [133]. occam 1
was otherwise a simple, untyped language, with all values and variables being ma-
chine words.

occam 2, released in 1987, added static typing of values and variables, compiler-
checked protocols for channels, and a safe-but-powerful static reference system (“ab-
breviations”) [77]. occam 2 was therefore one of the first languages to support protocol
descriptions for lightweight concurrency; contemporary languages with interprocess
communication only supported unstructured messaging. Later versions of the occam
2 compiler introduced static checking for unsafe aliasing of data and channel ends.

occam 3 was a much more ambitious proposal, with a draft specification released
in 1992 [34]. Aside from numerous enhancements to the procedural aspects of occam
2, occam 3 provided channel bundles, shared channels, and call channels, which made
calls to server processes look and behave like procedure calls. occam 3 was never im-
plemented, but some of its features were later incorporated into occam 2.1 and occam-
π.

occam 2.1 was a 1994 incremental update to occam 2, with extensions to the type
system to incorporate user-defined and record types, and with minor improvements
to the syntax [214]. occam 2.1 was the last version of occam designed by INMOS, by
then part of SGS-Thomson (now STMicroelectronics). By this point, the Transputer was
no longer competitive in terms of performance with general-purpose processors, and
remaining Transputer users were moving to other programming languages for ease of
porting.

The Transputer architecture survives today as the ST20 line of microcontrollers,
widely used in GPS receivers and set-top boxes—but stripped of most of its concur-
rency facilities, and programmed using C rather than occam. Further development of
occam was to take place in the research sector.
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occam-π

occam’s formal basis and elegant syntax—and the ability to get serious computing
done for little money with the Transputer—aroused considerable interest among com-
puter science researchers.

As the viability of the Transputer waned, occam users in industry and academia
started to look for ways to continue using the language upon other hardware. Success-
ful attempts to port occam to new architectures included the Southampton Portable
occam Compiler (SPOC), which generated portable C code from occam and used the
ω-test to perform static checks much more efficiently than INMOS’s compiler [68],
and Michael Poole’s tranpc, which translated the output of an extended version of
INMOS’s compiler into IA32 instructions [173].

The “occam For All” project ran from 1995 to 1997, with academic and industrial
partners aiming to enhance and portably implement the occam language. This work
led, eventually, to the language now called occam-π, which extends occam 2.1 in many
ways to make it a more useful modern programming language. Notable additions
include: a foreign function interface [264, 72]; user-defined operators [141]; mobile
data [141, 246]; channel bundles with mobile channel bundle ends and sharing, pro-
cess priority, forking and extended rendezvous [27, 20]; result abbreviations, nested
protocols and recursion [21]; barrier synchronisation [29]; mobile processes [33]; and
transparent networking [210, 209]. Work on occam-π continues; features pioneered in
occam-π have since been implemented in other process-oriented environments.

occam-π has multiple implementations. The INMOS occam 2.1 compiler, occ21,
has been incrementally extended to support the occam-π features. occ21 generates an
extended version of the Transputer instruction set, which is translated into IA32 code
by tranx86 [30]. Runtime support for occam-π is provided by the CCSP library, which
offers world-class scheduling and communication performance for process-oriented
programs on multicore CPUs [184]. (CCSP may also be used by C programs through
the CIF interface [31].) For non-IA32 architectures, and especially for mobile and em-
bedded devices, the Transterpreter provides a portable, lightweight, interpretive run-
time for extended Transputer code as an alternative to the tranx86-CCSP route [116].

Since the Transputer architecture is a poor match for modern CPUs, the tranx86
approach has performance limitations for straightline code; in addition, occ21 is writ-
ten in C, and is now unreliable and very difficult to maintain. Development began
in 2007 on Tock, a new occam-π compiler, written in Haskell as a replacement for
occ21 [202, 199]. Tock uses a nanopass approach for flexibility: new language features
can be implemented by slotting new passes into the compiler [204]. At the moment,
Tock generates portable C code that uses CCSP for scheduling; in the future, it may
use LLVM to output optimised native code directly. Like SPOC, Tock uses the ω-test
for efficient usage checking and more helpful error messages. (As a side benefit, the
development of Tock has yielded useful new strategies for generic programming in
Haskell [55, 56].)

While occam-π has a great number of features to support parallel programming,
these have been added to occam in a somewhat ad-hoc fashion over the last twenty
years, and as a result are sometimes inconsistent or awkward to use. Section 6.2.1
discusses future options for the development of occam-π.
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Embedded Concurrency

While inherently parallel processors—conventional multicore CPUs such as modern
IA32 chips, heterogeneous multicore CPUs such as the Cell, massively-parallel graph-
ics processing units, and embedded CPUs such as Parallax’s Propeller—have become
very common over the last few years, most of these provide little direct support for
message-passing concurrency. Two approaches to embedded concurrent processing
have low-level support for the process-oriented model, however, both of which are
part of the occam tradition (although neither use the occam syntax).

Handel-C is a language for the design of field-programmable gate arrays, aimed
at the same market as Verilog or VHDL; now sold as a commercial product by Men-
tor Graphics, it derives ultimately from Ian Page’s work on compiling occam code to
FPGAs [161]. Handel-C provides a subset of occam 2’s features, with a C-like syntax
and a number of extensions to allow access to the built-in features of a wide variety
of FPGAs [3]. The advantage of Handel-C over other FPGA design languages is that
it is much more of a conventional programming language, which simplifies hardware-
software co-design—and the advantage of the occam approach over languages such as
ANSI C is that parallelism, which is inherent in FPGAs, can be easily expressed and
statically checked to be safe.

The XC programming language is a more recent development. XC also offers ex-
tended occam 2 features with a C-like syntax [240]; it is being developed by XMOS,
a fabless semiconductor company developing high-performance CPUs for embedded
devices. (The name XMOS is a deliberate reference back to INMOS, with a number of
ex-INMOS staff being involved with XMOS.)

XMOS’s first line of CPUs is the XS1 architecture, with CPU cores that feature sup-
port for up to 8 hardware threads along with extremely flexible low-level input-output
facilities [134]. The target market is the area where high-end embedded CPUs and
FPGAs overlap, with the XS1 combining the flexibility of software with the hardware
interfacing abilities of FPGAs. Initial CPUs in this line offer between one and four CPU
cores per chip, with fast interconnections between them, and links provided for joining
multiple chips together (in much the same way as the Transputer’s external links). CPU
instructions are provided for asynchronous messaging between threads, with a uni-
form addressing scheme allowing communication between threads on the same core,
on different cores, and on different chips connected by external links. The XC lan-
guage builds occam-style synchronous channels using these low-level asynchronous
operations, with compiler optimisations used to minimise the number of messages
sent when multi-step protocols are used.

2.3.3 From Newsqueak to Go

The most visible recent process-oriented environment has undoubtedly been Google’s
Go language—but Go is actually the latest in a series of CSP-inspired languages that
developed in the US, in parallel to (and, sadly, with little influence from) the European
occam tradition.
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Newsqueak, Alef and Limbo

Newsqueak was developed at Bell Labs in the early 1990s as a concurrent, procedu-
ral language for writing graphical applications [168]. Newsqueak’s concurrency facil-
ities were inspired by CSP, and are extremely simple. The begin statement spawns a
new concurrent process. The chan type represents a strongly-typed, synchronous chan-
nel. The communication operator <- serves for both input and output, depending on
whether it is used prefix (<-c) or infix (c<-v). The select statement provides choice
between multiple possible communications. When multiple communications are pos-
sible, a random number generator is used to select one. Newsqueak’s other unusual
feature is the become statement that allows manual tail recursion elimination—which is
useful for writing processes in a CSP style.

Alef was developed as a C-style language for systems programming on Bell Labs’
Plan 9 operating system [262]. In terms of concurrency, Alef distinguishes between
processes, which are preemptively scheduled, and tasks, which are cooperatively sched-
uled. Alef’s concurrency facilities derive from Newsqueak’s, with some additions and
name changes to correspond more closely to occam: choice is performed by alt, vari-
ant protocols are supported, and a par statement provides parallel composition. Later,
the libthread library for Plan 9 was provided to provide Alef-style concurrency for C
programs [36].

Limbo was the standard programming language for the virtual-machine-based dis-
tributed operating system Inferno, developed from Plan 9 and Alef [65, 181]. Limbo’s
concurrency facilities are based on those of Alef’s, with the removal of tasks, since
Inferno’s underlying processes are sufficiently lightweight to use directly, and the re-
moval of the par construct. Extensions include implicit choice over arrays of channels
when used for input, and support for guards in alt statements.

Go

Development on the Go programming language began in 2007, by a team at Google
including several researchers who had worked on languages in the Newsqueak tradi-
tion. Go attempts to address several perceived problems with existing programming
languages, especially the inflexibility of the static type systems commonly used for
object-oriented development and the lack of good support for concurrent program-
ming [92].

Go’s model of concurrency is derived from the Newsqueak tradition—indeed, of
the languages above, it is closest to Newsqueak itself. Go encourages programmers to
use mobility to manage access to shared resources: “Do not communicate by sharing
memory; instead, share memory by communicating.” [91]

Go derives its name from the go statement, which spawns a new process. Processes
are lightweight and cooperatively scheduled. Supporting hundreds of thousands of
processes is an explicit goal of the Go runtime system; processes’ stacks start at a min-
imal size, and grow dynamically as necessary.

Channels carry any Go type, and may be synchronous or N-buffered, with the <-

operator used for both input and output. <- may be used in a “non-blocking” polling
mode with an extra boolean return value, where it returns immediately with an error
value if communication would block. Channels may be explicitly closed, and tested
for closed-ness. Once a channel has been closed, sending to it will block, and reading
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from it will return a default value defined for the type the channel carries. Channel
ends are first-class, allowing channel end mobility, and all channel ends are implicitly
shared.

select provides choice between multiple communications, with a random choice
being made when several channels are ready. The language specification describes this
as a “uniform fair choice” [92], which is inaccurate; without control over the order of
choice, no guarantee of fair service in processes using multiple selects can be made.
Both input and output communications may be used. (The occam problem with output
guards does not arise, owing to the lack of prioritised choice.)

Go’s facilities for error handling are rather limited—much like in occam, with no
support for exceptions; a panic facility is under development to allow failing processes
to be detected. No equivalent of channel poison is provided.

Go does not provide any way to wait for a process to finish, other than by explic-
itly communicating with it—that is, it has no equivalent of occam-π’s FORKING or even
Alef’s par. Idioms for waiting for process completion using channels are a common
topic of discussion on the Go mailing lists; this suggests that adding an equivalent of
FORKING—or, at least, support for barriers—would be a useful extension to Go.

Go provides essentially no static checking, other than type safety. The language is
designed so that actions that would be errors in an occam-like language (such as hav-
ing two processes write to a channel) have well-defined effects in Go; along with this,
the lack of protocols makes it hard to check the correct use of higher-level concurrent
patterns in a Go program.

Nonetheless, Go is an extremely promising language, with many similarities to
occam-π. Go—and thus process-oriented programming—is already being applied to a
variety of real-world applications.

2.3.4 Erlang

Erlang is not a process-oriented programming language. Instead, it uses the Actor
model of concurrent computation, which Erlang programmers call concurrency-oriented
programming. The Actor model is similar to the process-oriented approach in that a
program is composed from isolated processes, executing concurrently, and communi-
cating by passing structured messages [80]. However, in the Actor model, messages
are sent asynchronously, and addressed directly to particular processes—rather than
being sent synchronously along channels. This approach was widely used in con-
current programming environments of the 1970s and 1980s, and was influential upon
the development of object-oriented programming through Simula and Smalltalk (sec-
tion 6.4). More recent languages that support the Actor model include Io [114] and
Scala (section 2.3.5)—but Erlang is certainly the most successful contemporary Actor-
based language.

The development of the Erlang programming language began in 1985 at Ericsson
AB, as a high-level concurrent programming language for the development of reliable
telephony systems [14]. Erlang apparently evolved without influence from process-
oriented environments; the use of explicit communication channels was considered
early on but rejected [15].

Each Erlang process has an incoming message queue (a mailbox), to which messages
may be asynchronously sent by other processes. The receive statement lets a process
retrieve messages from its queue that match provided patterns, with messages that
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do not match the patterns remaining in the queue for later processing. A process can
therefore handle messages in an order different to that in which it received them. The
Erlang designers chose this mechanism because it was a close fit to the CCITT standard
languages used to specify communication protocols, and it allowed a process to handle
messages from several other processes without knowing which order they would be
received in. In a process-oriented environment, this kind of problem would be solved
using either choice or parallel composition.

For high-availability systems, Erlang provides error-handling facilities that allow
programs to be robust against both software and hardware failure. Related processes
may be explicitly linked together. When a process encounters an exceptional condi-
tion, it sends an “exit” message to any other processes it is linked to. Normal processes
will themselves exit upon receiving an exit message, causing clean shutdown of all
related processes. System processes can trap the exit message and recover from the
failure—for example, by restarting the failed processes. Erlang designer Joe Armstrong
says that “As far as I know, no other programming language has anything remotely like
this” [15]—but this is very similar to poison (section 2.2.4), albeit somewhat easier to
use; explicit linking would be a useful addition to process-oriented environments.

Erlang-style mailboxes, with out-of-order pattern-matching reception, could be in-
tegrated as a new type of synchronisation object into process-oriented environments,
with implementation and semantics being very similar to those of buffered channels.
This would allow Erlang’s patterns for constructing high-reliability systems to be used
in process-oriented programs—and allow Erlang programs to take advantage of high-
performance process-oriented runtime systems.

2.3.5 Java

Sun’s Java programming language is used widely in industry, research and teach-
ing; compiled to bytecode for a virtual machine, considerable research has gone into
making it execute efficiently across a wide range of platforms. As a result, there has
been considerable interest in supporting the development of concurrent applications
using Java. Java’s built-in facilities for concurrent programming were, prior to Java
5, primitive and difficult to use: threads (which could be operating system threads
or cooperatively-scheduled “green threads”, depending on the implementation) and
monitors. As a result, even Sun recommended against the use of threads except where
absolutely necessary: “If you can get away with it, avoid using threads. Threads can
be difficult to use, and they make programs harder to debug.” [225]

Nonetheless, several Java packages were built on top of these primitives to pro-
vide higher-level concurrency facilities—including the CTJ [98] and JCSP [244, 247]
packages for process-oriented programming. In both of these libraries, processes and
synchronisation objects are modelled as classes, and the interface attempts to mirror
existing Java concurrency practice as far as possible; for example, a process is a sub-
class of Process that implements the Runnable interface.

CTJ concentrates upon real-time systems, with extensive support for process and
channel priorities, and predictable approaches to scheduling. JCSP provides a wider
range of facilities for general-purpose Java programming—including all the process-
oriented programming features of occam-π, and a number of further extensions, along
with support for the development of distributed applications and a cut-down version
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for mobile devices. JCSP has been used successfully to prototype new types of synchro-
nisation objects [242]; while it offers significantly lower performance than the CCSP
runtime used for occam-π, experimentation is easier.

The poor state of Java concurrency primitives was rectified somewhat in Java 5,
with the introduction of the java.util.concurrent package. Its developers intended to
address the problems above by standardising a library of well-tested, high-level con-
currency facilities [128]. java.util.concurrent includes a number of classes that can be
used directly as process-oriented synchronisation objects: SynchronousQueue is a syn-
chronous channel, ArrayBlockingQueue a buffered channel, CyclicBarrier a barrier and
CountDownLatch a bucket. (It also includes other facilities that could be provided as syn-
chronisation objects: for example, Exchanger, which allows two processes to atomically
swap references, which we would normally implement as a two-process . Ring.)

More interesting, though, is the provision of a range of portable atomic operations
that can be used to implement new, efficient, lock-free concurrency facilities; these
translate into new operations added to the Java virtual machine specification for Java
5. Future versions of JCSP will make use of these operations for more efficient synchro-
nisation. What Java still lacks is an equivalent of coroutines or continuations (a way of
“descheduling” a running process); this makes implementing lightweight scheduling
in Java very difficult, requiring bytecode manipulation [163, 191].

The popularity of the Java virtual machine means that it is now used as a compi-
lation target for other languages as well; compiling to the JVM means that you can
take advantage of the wide range of existing Java packages. Scala is a popular mul-
tiparadigm language that runs on the JVM, with a powerful Haskell-like type system
and a more succinct, expressive syntax than Java [149]. There is considerable interest in
concurrency within the Scala community. Scala comes with an Actors library that pro-
vides support for lightweight processes using the Actor model, and the Communicat-
ing Scala Objects library follows the JCSP model to directly support process-oriented
programming within Scala [224].

2.3.6 C#

The C# programming language is Microsoft’s competitor to Java, executing through
bytecode on the Common Language Runtime. The CLR was designed to address
many of the shortcomings of the JVM, including having better support for multiple lan-
guages. As with Java, C#’s built-in concurrency facilities are fairly limited, and there is
considerable interest in providing higher-level abstractions for the construction of con-
current programs. The Jibu library provides JCSP-style process-oriented programming
facilities for C# [121]—but there are several more interesting approaches to concurrent
programming that have been prototyped as C# language extensions.

The Cω language (originally Polyphonic C# and X#) extends C# with features from
the join-calculus: asynchronous methods and chords [37]. A method declared as asyn-
chronous causes a new process to be spawned to execute its body, running concurrently
with the calling process (as if the method call had been forked, in process-oriented
terms). A chord is a set of method headers, all of which must be called at the same
time (either in different processes, or asynchronously) for the method body to execute.
A synchronous channel in the join-calculus can thus be implemented as a chord of send
and receive methods; the processes calling them will only be able to continue once the
rendezvous is complete.
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If method calls are thought of in terms of message-passing, then an asynchronous
method is simply one that does not require an acknowledgement, and a chord is a con-
junctive choice across messages. Cω is not a process-oriented language, but it would
certainly be possible to implement useful process-oriented facilities in terms of asyn-
chronous methods and chords.

Sing# is a process-oriented language: it extends C# with facilities for systems pro-
gramming on Singularity [79]. Singularity is a process-oriented operating system, with
“software isolated processes” communicating over channels [111]. Sing# makes use of
mobile data (the “transfer heap”) for efficient communication between processes. In-
terfaces between Sing# processes are defined using contracts, which are bidirectional
channel protocols (section 5.3.2); code conformance to contracts is statically checked
by the Sing# compiler.

2.3.7 Python

The Python programming language was designed as a practical programming lan-
guage with sufficiently clean syntax and semantics to be useful as a teaching language.
It has a Smalltalk-style dynamic type system, and indentation-based syntax. There
are multiple implementations of Python with different performance characteristics and
sets of facilities: the CPython implementation, which runs Python programs on top of
its own interpretive virtual machine, is the most common, but there is also Jython on
top of the JVM, and IronPython on top of the CLR. The Python community makes
wide use of shared-nothing, message-passing concurrency, and a number of different
facilities are provided to support it.

The Python standard library includes the threading module, which gives access to
operating system threading facilities in a portable fashion. However, this only enables
concurrent programming, not parallel programming: the CPython runtime system se-
rialises the execution of instructions in the Python virtual machine (using the “global
interpreter lock”), meaning that multithreading cannot be used to speed up a pure-
Python program. In practice this is less of a problem than it seems, since execution
of FFI calls can occur in parallel, and—since Python is a relatively slow language any-
way, even in JITting implementations—Python programs often use FFI-based libraries
to perform compute-heavy operations.

Synchronisation and communication between threads can be performed using the
low-level operating system facilities exposed by the threading module (such as mu-
texes), but it is more convenient to use the multithreaded queues provided by the Queue

module, which are designed to provide the facilities of shared, buffered channels for
interthread communication. A queue’s buffer may be the usual FIFO type, but it may
also be last-in-first-out, or priority-ordered. In addition, queues can be used to wait for
the completion of other processes: each queue keeps a count of items that have been
sent through it, with a task_done method that reduces the count (to be called once a re-
ceiving process has finished processing), and a join method that blocks until the count
becomes zero.

Python 2.6 introduced the multiprocessing module, which provides interfaces sim-
ilar to threading and Queue, but using operating system tasks instead of threads—
allowing real parallel execution of Python code, at the cost of slower communica-
tion [147].

Python provides Icon-style generators [205]. A generator is a function that is called
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in a context that can make use of multiple values (such as a “for each” loop); a generator
calls yield to return a value, and is then suspended until the next value is required. (In
process-oriented terms, a generator is a forked . Producer process; file.get.options
in ? KRoC’s file module is an example of a generator.) The Kamaelia framework [219]
implements generalised message-passing lightweight concurrency for Python in terms
of generators. Kamaelia processes are generator functions that are called from a sched-
uler. Processes in Kamaelia communicate by yielding a description of the communica-
tion, causing execution to return to the scheduler, which can then execute the appropri-
ate process to complete the communication. This approach allows reasonably efficient
lightweight scheduling—even across multiple threads—but the use of yielding cannot
be hidden from the programmer, and only the function representing the process (rather
than any function or method it calls) is able to yield, limiting abstraction.

A generator is a restricted form of coroutine, only being able to return execution
to the process that called it. Unfortunately, the standard version of Python does not
provide support for generalised coroutines, which makes seamless lightweight con-
currency (where sending a message is just a method call) impossible to implement
in pure Python. The Stackless Python project attempts to rectify this by adding sup-
port for generalised coroutines to the Python runtime system, meaning that a modified
Python interpreter is required, but a wide variety of concurrent programming facilities
can be easily implemented (including processes and synchronous channels) [227]. The
Greenlets module implements coroutines as a module that uses FFI calls to change
the C stack pointer, which works with the regular interpreter but is unportable and
fragile [7]. Neither has really taken off for real Python applications.

Process-oriented programming facilities for Python are provided by two libraries:
PyCSP and python-csp.

PyCSP was initially developed in 2007 to support parallel programming of scien-
tific applications in Python; as such, it needed to be friendly enough for use by users
with little programming experience [11]. The set of facilities provided by PyCSP were
originally based upon those in JCSP—such as One2One and Any2Any channels—with
some simplifications made possible by Python’s syntax and type system. The first ver-
sion of PyCSP was implemented using Python’s threading module, using algorithms
based upon those in JCSP.

PyCSP was extensively revised in 2009 in response to feedback from users [235].
Channel types other than Any2Any were removed, bringing PyCSP closer to the New-
squeak model. More convenient facilities for channel poison and network shutdown
were provided, with a reference-counting “retirement” mechanism for shared chan-
nels. Output guards were supported in choice. Finally, the library interface was re-
designed to take better advantage of Python’s syntax, resulting in Python concurrency
operations comparable in succinctness to occam.

In addition, the 2009 revision of PyCSP provides multiple different implementa-
tions of its concurrency primitives [85]. PyCSP processes can now be represented
by operating system tasks (using multiprocessing), operating system threads (using
threading), or lightweight processes (using Greenlets), depending on the requirements
of the application. To support lightweight processes, support was added for running
blocking calls in a separate thread, using an @io decorator.

python-csp is the younger of the two libraries [143]. python-csp provides operators
for process composition and choice that directly mirror the syntax of CSP. python-csp
can use either a thread-per-process or task-per-process model, and in addition can run
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on top of Jython, exporting its concurrency facilities to Java programs through a JCSP-
like interface.

2.3.8 Haskell

Haskell is a lazily-evaluated, purely-functional programming language [110], with ex-
ceptionally good facilities for concurrency. Haskell’s type system allows a wide variety
of different computational models to be expressed without changes to the language.

Haskell supports the expression of different models of computation within a single
program through the use of monads. A monad represents a model of computation: a
value in a monad is an action, and the monad defines how actions may be sequenced.
For example, input-output operations are performed in Haskell using actions in the IO

monad; a value of type IO String is an action that returns a string (such as reading a
line from a file). The Haskell standard library includes a variety of monads for different
purposes—for example, the GenParser monad represents an action that attempts to
parse a value from an input stream, backtracking upon failure.

Values in Haskell are immutable by default, which means that they can be safely
and efficiently duplicated in concurrent programs without aliasing concerns. It is pos-
sible to construct alias-able reference types within monads that support them, how-
ever; for example, the IO monad provides an IORef type.

There are several implementations of Haskell, with the most widely-used being
the Glasgow Haskell Compiler. GHC’s runtime system provides a lightweight process
scheduler that approaches CCSP in terms of performance, and considerably exceeds
it in terms of features. GHC processes may be preempted (at relatively course granu-
larity; it is not a real-time system). The scheduler supports blocking calls to external
library functions in much the same way that CCSP does, and additionally includes an
I/O scheduler that allows processes to wait efficiently for file descriptors to become
ready [130].

The Concurrent Haskell library, Control.Concurrent, provides GHC’s basic concur-
rency features—lightweight threads, and I/O scheduling—along with some synchro-
nisation objects [165]. In process-oriented terms, MVar is a one-place buffered chan-
nel, Chan a infinitely-buffered channel, and SampleVar a one-place overwriting-buffered
channel, all with shared ends. The library does not provide any facilities for choice,
however; the usual idiom is to have processes complete for a shared channel, rather
than having processes choose from multiple channels.

As Haskell is lazily-evaluated—computations are not actually performed until their
results are required, with the runtime system passing around thunks rather than real
values—concurrent Haskell programs can have surprising performance characteris-
tics. For example, implementing a . Farm in Haskell might not result in any com-
putation being performed in parallel at all! The Control.Parallel module provides a
seq function to force a value to be evaluated, along with a par function that lets the
runtime precompute a value in the background that will be required later (a spark—a
purely-functional future).

Transactional Memory

Transactional memory is an interesting and relatively new approach to concurrent pro-
gramming. The philosophy behind transactional memory is essentially the same as
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that of process-oriented programming—concurrency is best achieved by composing
isolated processes which interact only at defined interfaces. However, transactional
memory attempts to make shared-memory programming safe, rather than discarding
it entirely in favour of message-passing.

In a transactional memory system, the interfaces between processes are regions
of shared memory that can be updated and read by multiple processes [97]. Safety
is achieved using a technique drawn from databases: when a process wishes to access
transactional memory, it must first begin a transaction. The actions that take place inside
the transaction occur atomically, as if the process had acquired a global lock across the
whole system—they either all succeed, with the process acquiring a consistent view of
all the variables it reads, or all fail, in which case any changes made are invisibly rolled
back.

This makes transactional memory a highly convenient programming mechanism
for algorithms that can be expressed in terms of shared memory [2]. It is particularly
attractive as a better mechanism for existing threads-and-locks programs—simply re-
placing all locked regions with transactions will provide the same semantics, but with-
out the need to worry about acquiring the right locks in the right order; the program-
mer can write code without needing to explicitly manage access to shared resources.

A transactional memory system gains many of the advantages of a transactional
database—in particular, it can execute optimistically, meaning that the program as-
sumes it will succeed, and only takes a performance hit when a transaction fails. When
contention on shared resources is low, rollbacks are infrequent, and a shared-memory
program’s performance will usually be improved since the cost of taking locks (es-
pecially multiple locks) is higher than that of simply checking that a transaction has
succeeded.

However, the converse also applies: when contention is high, many attempted
transactions will need to be rolled back. In a system using locking or message-passing,
processes will naturally take turns to use a shared resource. In a transactional system,
it is possible for processes to “fight”, with processes running on different physical pro-
cessors causing each other’s transactions to be rolled back. The result is that it can be
difficult to guarantee, in a transactional system, that any process is able to make for-
ward progress [158]. Hardware support for transactional memory can help to some
degree by reducing the size of the window during which contention is possible [70],
but fundamentally the runtime system must be able to detect and prevent it—a difficult
problem to solve without full-program static analysis. As a result, most existing STM
systems scale poorly as contention and the number of physical processors increase [59].

Transactional memory has been implemented in a number of concurrent program-
ming environments, but one of the most widely-used is the software transactional mem-
ory implementation that GHC provides for Haskell [96]. In Haskell, actions within
a transaction are specified in the STM monad; an atomically function executes such a
transaction from the usual IO monad. The retry action is a notable feature of Haskell’s
STM implementation: when executed inside a transaction, it causes the transaction to
be immediately rolled back and not executed again until one of the variables that had
previously been read changes value. This allows a process to efficiently wait for a value
to change, which makes for easy implementation of higher-level concurrency mecha-
nisms, such as channels, in terms of STM. In addition, Haskell STM allows prioritised
choice across several possible transactions, with the first to complete succeeding and
the rest being rolled back.
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Transactional memory could be integrated into a process-oriented programming
environment by treating the execution of a transaction as simply another type of syn-
chronisation event, usable in choice and other forms of composition. The use of nested
transactions could even allow transactions to contain other synchronisations—allowing
communications to be rolled back (at a cost) [142].

CHP

The Communicating Haskell Processes library provides an implementation of process-
oriented programming facilities for Haskell [51]. CHP is an embedded domain-specific
language [109, 222], expressing some of the safety properties of process-oriented pro-
gramming in Haskell’s type system to provide a degree of static checking. Actions in
a CHP program are represented as values in the CHP monad, which means that CSP-
style operators for composing processes can then be provided as functions upon CHP
values.

CHP provides both parallel composition and forking operations; a forking context
is represented as a monad that extends the regular CHP monad. (Conceptually, an
action in the extended monad is one that behaves like a regular CHP action, but in
addition will cause the surrounding forking context to block until it finishes.)

CHP provides synchronous channels with implicitly- or explicitly-shared ends. In
addition, it provides broadcast and reduce channels that can communicate with sev-
eral processes simultaneously. Extended input and output operations are provided.
The library also provides barriers, which keep track of a phase count, and a prototype
implementation of clocks has recently been added. All synchronisation objects in CHP
may be poisoned, and smart looping constructs are provided to handle poison in a
convenient way.

CHP supports prioritised choice and conjunctive choice—the only environment so
far to provide the latter. CHP’s choice facilities work over not only arbitrary events
(channel inputs and outputs, and barrier synchronisations), but over arbitrary actions
in the style of CSP’s choice operators. This means that, unlike in most process-oriented
environments, the programmer does not have to separate the event from the action
that will be performed when it becomes ready when specifying choice. In addition, an
event—or a nested choice—can be abstracted into a function, which can itself be used
in a choice.

This works because CHP’s monadic actions are able to carry extra information
about the actions they represent, both at the type level and at the value level—meaning
that the next event in the trace of an arbitrary action can be found at compile time.
This also permits static analysis of CHP programs by a process of abstract interpreta-
tion, and allows the automatic extraction of CSP models from CHP programs, allowing
straightforward model-checking of concurrent Haskell programs [47].

As Haskell provides type inferencing, the types of channels (and even their degree
of sharing) can usually be automatically inferred in a CHP program. Haskell’s support
for higher-order programming makes it possible to write higher-order functions for
constructing process network fragments—processes and actions are first-class values
in Haskell.

The CHP-Plus library uses Haskell’s typeclasses to provide very high-level facili-
ties for process composition [48, 50]. Typeclasses are provided that describe how pro-
cesses may be connected together, automatically matching up compatible channels and
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events; using these, operations for constructing regular structures such as rings and
meshes are built. CHP-Plus also provides a higher-level EDSL for describing process
behaviours—such as repeatedly performing an action until an event completes; many
common kinds of processes can be built directly using these.

While CHP’s channels are strongly-typed, CHP does not yet support protocols.
This is not a significant limitation compared to other environments because Haskell’s
algebraic data types provide all the facilities of occam-π protocols—but it does mean
that bidirectional protocols cannot be checked. However, other libraries have experi-
mented with encoding protocols in Haskell’s type system using session types [146]; a
similar approach could be used in CHP in the future.

CHP’s operations are implemented using GHC’s STM mechanism, with CHP pro-
cesses represented by STM’s lightweight processes. Internally, CHP has a single CSP
event type, which is then used to construct other communication mechanisms. The
algorithms used to resolve multiway and conjunctive choice between events in CHP
are reasonably complicated—in effect, they are a constraint solver—meaning that CHP
has rather lower performance than runtime systems such as CCSP. This was a deliber-
ate design decision to enable experimentation with new process-oriented mechanisms;
future work could improve performance at the cost of greater complexity in the CHP
library.

2.4 Design Patterns

A design pattern captures a reusable solution to a common problem. A pattern language
is a collection of related, named patterns. Pattern languages serve the dual purposes of
documenting best practice, and providing a shared vocabulary for discussing design
problems.

2.4.1 “A Pattern Language”

Pattern languages were initially promoted in the mid-1970s by a team led by architect
Christopher Alexander. Their books “The Timeless Way of Building” [4] and “A Pat-
tern Language” [5] describe the principles behind design patterns, and give a language
of 253 patterns for the construction of towns, neighbourhoods, buildings and rooms.
A pattern “describes a problem which occurs over and over again in the environment,
and then describes the core of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it the same way twice.”

Patterns in “A Pattern Language” are described in a standard format:

• a section classification by scale;

• a number and title;

• an indication of the team’s confidence in the strength of the solution—whether
it is a “true invariant” required for any solution of the problem, or merely one
possible solution;

• a photo illustrating one application of the pattern;

• a list of larger-scale patterns that this pattern will be involved in implementing;
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• a brief statement of the problem;

• a discussion of the problem, with references and examples as “evidence of its
validity”;

• a brief statement of the solution and its “field of physical and social relation-
ships”, as an instruction, often illustrated by a sketch;

• a list of smaller-scale patterns that will be used when implementing this one.

The patterns vary greatly in length and complexity.
“A Pattern Language”, and its related work “The Timeless Way of Building” [4],

are philosophical works as well as practical ones: a pattern language is “a fundamental
view of the world” that provides insight into “the nature of things in the environment”.
Alexander’s view of the world is compositional and generative: objects are important
primarily in terms of how they interact with other objects, and those interactions may
themselves spark the creation of new objects. (Design patterns differ from design rules
in this respect: patterns are generative, rules are constraining.)

Architecture differs from software engineering in that it has thousands of years of
experience behind it, rather than just sixty; Alexander’s pattern language can thus aim
to be reasonably complete in a way that pattern languages in computer science can-
not. Alexander’s patterns are inherently interrelated, and operate at multiple levels of
scale, with larger patterns requiring smaller patterns for their completion. “No pattern
is an isolated entity.” Alexander notes that his is but one of many possible pattern
languages: “every society which is alive and whole, will have its own unique and dis-
tinct pattern language . . . and every individual in such a society will have a unique
language, shared in part, but which as a totality is unique to the mind of the person
who has it.”

2.4.2 “Design Patterns”

“Design Patterns: Elements of Reusable Object-Oriented Software” [87], first published
in 1995 and often known as the “Gang of Four” book after its authors, was the work
that popularised the idea of design patterns for software engineering.

“Design Patterns” presents a catalogue of 23 patterns for object-oriented design
drawn from the authors’ experience with real-world applications. Unlike “A Pattern
Language”, the patterns described in the text all apply at roughly the same scale; there
are relationships between patterns, but no simple hierachy. This choice of scale is de-
liberate: “Point of view affects one’s interpretation of what is and isn’t a pattern. One
person’s pattern can be another person’s primitive building block.” Patterns are pri-
marily based upon “common collaborations” among objects.

Patterns represent a higher level of abstraction than is usual in OO decomposition:
“Design patterns are not about designs . . . that can be encoded in classes and reused
as is.” A common objection to the use of design patterns is that they do not promote
code reuse [94]—but patterns are designed for things that cannot simply be provided
as reusable components; if a pattern can be provided as a class, it is not really a pattern.
(This implies that pattern catalogues will change over time, as languages and libraries
become more expressive; we will revisit this later.)
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Patterns are described using a form that is somewhat more regimented than that in
“A Pattern Language”, resulting in the pattern descriptions all being roughly the same
length. Each description includes:

• a name, and “also known as”;

• a classification: object or class, creational, structural or behavioural;

• a brief description of the problem;

• a simple example of the pattern in use;

• the situations in which the pattern may be applied;

• a UML-like graphical representation of the pattern;

• a list of the classes that participate, and their collaborations;

• the consequences of using the pattern upon the rest of the system;

• practical advice on implementing the pattern in code, with examples;

• examples of use in real systems;

• a list of patterns “related to” this one.

This catalogue has been enormously influential within the field of object-oriented
design; patterns such as ◦ Singleton, ◦ Iterator and ◦ Decorator are familiar to most
OO programmers, and several of these are now sufficiently ubiquitous within OO de-
sign to have inspired language and library features to support their use. This is partly
because “Design Patterns” got there first—it was many programmers’ first exposure to
design patterns in any context—but the authors’ careful choice of scope, elegant style,
and focus upon patterns found in real applications lead to a pattern catalogue that was
immediately and directly useful to working programmers. The patterns in “Design
Patterns” are just as relevant today as they were in 1995.

Much of the advice—such as “Program to an interface, not an implementation”, a
recommendation familiar to message-passing programmers generally—and many of
the patterns in this book may be applied profitably to process-oriented programs as
well as object-oriented ones; see section 4.5.

2.4.3 Other Concurrent Patterns

There has, to date, been no comprehensive study of the patterns of process-oriented de-
sign, although isolated patterns have been noticed in the course of other work (for ex-
ample, while using occam-π for teaching [120], during the design of SystemCSP [153],
and while building higher-level patterns for simulation [10]). Attempts have been
made to describe patterns within other approaches to concurrent design, however.

Doug Lea’s book “Concurrent Programming in Java: Design Principles and Pat-
terns” [127], published in 2000, gives an overview of a wide range of contemporary
strategies for Java concurrency—including process-oriented programming, presented
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using JCSP. It provides excellent discussions of a number of low-level patterns, includ-
ing copy-on-write data, fork-join, and worker threads. However, these are not pre-
sented in a standard form—indeed, it is usually not obvious that a particular section
is considered to describe a pattern without consulting the index—and, as a result, it is
difficult to use CPiJ as a pattern language.

Jorge L. Ortega Arjona’s book “Patterns for Parallel Software Design” [157] collects
much of his earlier work on design patterns for concurrent object-oriented program-
ming [156, 155, 154]. While the descriptions are in a standard form, with well-chosen
names, and useful descriptions of how to apply them to real-world problems, his pat-
terns are at a very low level—they would generally be considered to be fundamental
programming facilities in process-oriented approaches, rather than true patterns. (This
does not make them invalid—just not immediately useful for this work.)

The “Pattern-Oriented Software Architecture” series is an ambitious attempt to col-
lect design patterns across a wide range of software engineering applications in a stan-
dard form—although the form chosen is even more complex and baroque than that
in “Design Patterns”. The second volume in the series collects “Patterns for Concur-
rent and Networked Objects” [206]. Most of the patterns would, again, be considered
fundamental features of process-oriented programming (“Thread-Specific Storage”),
but others operate at a higher level; as in section 4.5 in this work, the authors show
how conventional object-oriented patterns can be adapted to function in a concurrent
environment.

The Portland Pattern Repository, a well-known online collection of design pat-
terns and other material on software engineering, has a category for concurrency pat-
terns [174]. Again, these tend to be at a very low level (“Semaphores for Mutual Exclu-
sion”), although there is some discussion of higher-level patterns such as pipelines in
the pattern descriptions.

2.5 Process Diagrams

Diagrams are an important tool in process-oriented software design. A process diagram
is a graphical representation of a process network—the relationships between the pro-
cess instances in a system—at a particular point in time. For a static network, where
the set of processes and the connections between them do not change, a single diagram
will suffice. For a dynamic network, a filmstrip or flip-book animation can be used to
show the evolution of the network over a sequence of snapshots (for an example, see
figure 36).

Process diagrams bear a resemblance to the circuit diagrams used in electronic de-
sign. This can be attributed to the widespread use of process-oriented software de-
sign in embedded systems, where software designers are likely to already be familiar
with circuit diagrams; INMOS and XMOS have encouraged embedded programmers
to think of process-oriented design in the same way they would think of connecting
electronic components together.

The syntax of process diagrams has never been standardised, although local con-
ventions have emerged in the communities that use them. As a result, the process
diagrams in this work are in a variety of different styles. Process diagrams are gener-
ally considered to be an informal notation, and it is often useful to break the rules of the
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Figure 12: Process diagrams

syntax—or invent domain-specific extensions to the syntax—in order to more effec-
tively describe a system. For example, process diagrams using Trap or other network
libraries (figure 39) often show network links as well as channels; hardware devices or
external libraries to which particular processes interface can also be shown as if they
were processes themselves (figures 17 and 18).

A process diagram is not necessarily a complete representation of the system; it
may represent only part of a larger system, with internal details of nested processes
elided, or connections running “off the page” to other processes not shown. Com-
plex process networks—especially those with repeated parts, or with both static and
dynamic parts—are often best expressed using multiple diagrams.

2.5.1 The Syntax of Process Diagrams

Most of the basic facilities of process-oriented programming described in section 2.2
can be shown in process diagrams.

Processes are usually shown as rectangular boxes, with the name of the process
as a label inside the box (figure 12a). Different types of processes can be visually dis-
tinguished using different shapes; by convention, . Merge and . Delta processes are
drawn as triangles, . Black Hole processes are solid circles, and agents in a simulation
are often drawn as “smilies”. (Many of the processes in section 4.1 could similarly be
distinguished by shape in the future.)

Channels are drawn as arrows that connect processes, with the channel’s direction
indicated by an arrowhead at the output end (figure 12b). When a channel carries a
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two-way protocol (for example, a . Client-Server connection), the arrowhead shows
the direction of the first communication. Channels may optionally be annotated with
their name and the protocol they carry. The protocol can be set in smaller text if neces-
sary to avoid confusion, although naming conventions in most languages make chan-
nel names and protocols distinct anyway (for example, protocol and type names may
be capitalised).

A process’s label may also include the process’s parameters that are not synchro-
nisation objects; parameters that are synchronisation objects can be drawn as discon-
nected stubs when a complete process network is not being shown (figure 12c). When
a process is internally implemented as a process network, the internal network may
be shown inside the box, with the label moved to the corner, and parameters that cor-
respond to synchronisation objects drawn crossing the edges of the box (figure 12d).
Such parameters can be labelled with their names immediately outside the box.

In the case of occam-π, where two-way protocols must be simulated using channel
bundles, it is common to draw a . Client-Server channel bundle as if it were a two-way
channel—that is, just as an arrow. (See section 4.2.5 for more information on drawing
client-server relationships in process diagrams.) Mobile channel ends are not usually
visually distinguished from static channel ends—except when their reconnection is
animated across multiple process diagrams—but where necessary, this can be done by
drawing the channel’s arrow as a curved line.

A shared channel—one whether either or both of the ends is shared—can be drawn
in two ways: either as a small, unfilled circle (figure 12e), or as a heavy arrow (fig-
ure 12f). In either case, each individual process using the shared channel has its con-
nection shown as a separate arrow. A channel bundle is drawn as an arrow with a
slash across it, optionally with an annotation giving the number of channels contained
in the bundle (although this is unnecessary when the bundle’s type is given as an an-
notation); this syntax is the same as used in circuit diagrams for buses.

A barrier is drawn as a line with a T-shaped cap at each end (figure 12g). Each
enrolment upon the barrier is shown as a line connecting the enrolled process with
the barrier. Other multiway synchronisation objects—partial barriers, buckets, and so
on—can be drawn in similar ways, with the line annotated to show the object’s type.

When an application is explicitly distributed across multiple physical locations—
for example, different processors in an embedded system, or hosts in a distributed
system—the locations are drawn as boxes surrounding the processes they contain (fig-
ure 29), or divided by lines if the structure is sufficiently regular (figure 39).

2.5.2 Drawing Process Diagrams

As process diagrams are often drawn by hand (on paper, or on a whiteboard), the syn-
tax has evolved to support this. For example, shared channels were originally drawn
as arrows with thick lines, but it is difficult to distinguish between thin and thick lines
in a hand-drawn diagram; the current syntax with arrows and nodes is more conve-
nient. Similarly, the original INMOS style for process diagrams usually represented
processes as circles (figures 16 and 17), using rectangles instead to represent physical
processors (figure 15); however, rectangles are easier to draw and make better use of
space. Unlike in UML, the styles used for arrowheads have no significance.

The use of process diagrams in automated tools for software design is complicated
by their snapshot nature, making them most useful for relatively static systems. The
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Strict occam Design Tool [35, 256] was an editor for Transputer process networks, using
static design rule checking to allow safe concurrent systems to be constructed graph-
ically; it introduced a number of extensions to the basic syntax of process diagrams,
including a “channel weaving” mechanism that allowed several forms of repetitive
processing networks (such as FFTs) to be specified graphically. POPed [215] is a pro-
cess network editor designed specifically for teaching concurrency, allowing students
to build complex process-oriented systems using a library of predefined components.

Snapshots can be used to visualise a process network’s state during debugging; in
these cases, the syntax of process diagrams is often extended to display some represen-
tation of the internal state of the processes and synchronisation objects in the network.
This is especially useful when dealing with problems such as unexpected deadlock: a
visualisation that shows the state of the channels in the network can make the cause of
deadlock much easier to determine. GRAIL [221] was an early example of this, show-
ing graphically not just the connections between processes in a Transputer system, but
also the load on individual physical processors, and the block structure of the occam
code in each process. More recent adaptations to the Transterpreter have allowed an
animated representation of the process network in a running occam-π program to be
visualised, with interactive features that allow the programmer to explore the nested
structure of their program, down to the source code of each individual process [186].

2.5.3 Other Kinds of Diagrams

The lack of a standard definition of process diagram syntax and semantics tends to
hinder communication between process-oriented developers. There are several exist-
ing forms of diagram upon which a standard process diagram syntax could be based.

There are a wide variety of dataflow diagram syntaxes that resemble process dia-
grams when the latter are used to describe dataflow systems; these are supported by
tools such as The MathWorks’ Simulink, Kamaelia [219] and the GNU Radio Compan-
ion [41]. These are rarely precisely defined, and often lack abstraction features such as
nesting.

Several graphical syntaxes exist for process calculi. These are generally supersets of
process diagrams, in that they represent both the relationships between processes and
their internal implementations; it is often possible to use a graphical process calculus to
represent a process network by simply not showing the internals of the processes. For
example, the Philips-Cardelli graphical syntax for the stochastic π-calculus [166] aims
to support the modelling of biological systems; it combines the rich semantics and tool
support of the π-calculus with the convenience of familiar graphical notations such as
Petri nets [164].

GML is a graphical language that supports the design of practical real-time embed-
ded applications, with automated code generation for process-oriented environments
such as occam and JCSP [99]. GML includes representations of non-CSP language fea-
tures such as process priority, and higher-level concepts such as client-server relation-
ships. The gCSP tool provides a graphical editor for GML with automated design rule
checking [123]. In contrast to process diagrams, GML shows both communication rela-
tionships and compositional (scheduling) relationships between processes; this makes
GML more precise and expressive, at the cost of greater complexity.

UML is the best-known family of graphical languages for software engineering,



CHAPTER 2. BACKGROUND 46

add.two

add (1) add (1)
in outout in

Figure 13: Process network as composite structure diagram

nearly ubiquitous in object-oriented design [148]. Assuming that processes are repre-
sented as classes (which is usually the case for process-oriented libraries in OO lan-
guages), many types of UML diagram can be used in the design of process-oriented
systems; for example, sequence diagrams can be used to show the message-passing
behaviour of a set of processes over time. In addition, UML is well-supported by both
general-purpose and special-purpose tools, so defining process diagrams as an exten-
sion to UML would have considerable advantages. UML’s semantics are deliberately
somewhat loosely defined, and diagrams can be used in an informal fashion; UML
class and activity diagrams are becoming increasingly popular to describe biological
models [177].

(Interestingly, class diagrams, while widely used in object-oriented design, seem to
be rarely used in process-oriented design—perhaps because process-oriented design
rules tend to be stated in terms of relationships in the process network that are not
easily visible in a class diagram. Conversely, object diagrams, which show instances of
objects and the relationships between them, are relatively rarely used in OO design.)

UML 2.0 introduced composite structure diagrams, which represent snapshots of sets
of components and the connections between them [151]. Composite structure dia-
grams support nesting of components, connection ports, and messages (“signals”) that
are sent between components; they are already a reasonably good match for process
diagrams, particularly when used to describe client-server systems. Signals between
components are described using a very simple form of protocol; two-way signalling
is idiomatically described using matching pairs of ports, in the same way that occam-
π simulates two-way protocols using pairs of channels. Figure 13 shows one of the
nested process networks from figure 12 redrawn as a composite structure diagram.

Inspired by both GML and UML, SystemCSP is a recent family of graphical lan-
guages for engineering CSP-based concurrent systems [153]. SystemCSP’s features for
describing components and the interfaces between them are similar to UML composite
structure diagrams, but with the richer communication semantics of process diagrams.



Chapter 3

Case Studies

The patterns in chapter 4 are all drawn from examples found in real-world process-
oriented programs. This chapter describes the projects that were the primary case
studies for this work: notable applications of process-oriented programming, all of
which contributed multiple instances of patterns. The intention is to give a general
overview of each case study, and the context in which it was created. The case studies
are listed here roughly in chronological order, proceeding from Transputer applications
to projects currently under active development.

The case studies fall into three categories:

• historical projects that this work simply documents: ? Flightsim, ? occam-X11,
? occvid;

• projects that the author already had a significant hand in the development of
prior to the commencement of this work: ? KRoC, ? RMoX;

• projects developed with an explicit goal of developing and applying the patterns
described in this work: ? Life, ? LOVE, ? Occade, ? Occoids, ? Plumbing.

3.1 Flightsim

Flightsim was an INMOS technology demonstrator, first shown off to the public at
SIGGRAPH 87 [17]. It is a multi-user flight simulation game, providing a simulated
3D world with a landscape, animated aircraft and air-to-air missiles. Aircraft (and
missiles) may be controlled by human players using a joystick, or by a simple AI. Each
player’s view is rendered in 3D using filled polygons at video frame rates, with a radar
screen and a head-up display providing information on their score and their aircraft’s
attitude and speed (figure 14). Any number of players are supported, provided each
has their own display hardware.

Flightsim was built as an example of how INMOS’s high-performance Transputer
processors could be combined to do in software what would normally require ded-
icated hardware. The pinnacle of 3D flight simulation gaming on general-purpose
computers in 1987 was, perhaps, David Braben’s Zarch on the Acorn Archimedes; this
achieved much lower resolutions and frame rates, did not support multiple players,
and was written in hand-tuned ARM assembly. Flightsim was written with expansion
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Figure 14: Flightsim running on KRoC with four players

in mind—for example, for commercial flight training—and its architecture and imple-
mentation are generally straightforward and easily-maintainable. The initial version
was completed in three weeks [16], and occupies a little under 9,000 lines of occam 2
code.

Flightsim’s large-scale architecture has all the players connected in a . Ring; each
player’s connection to the ring is through a “ring control” process (figure 15). The
objects in the world are continually sent around the ring, with one message per object.
Each player therefore gets to see all the objects in the world as they pass, and can
add, modify and remove objects if they choose. For example, when a player fires a
missile, they add a new missile object to the ring; and when the player’s own aircraft
goes past, its position is updated according to its current velocity. Each ring control
process contains sufficient buffering for all the objects the player might want to add
to the simulation; the overall ring therefore contains enough buffering for the whole
simulation, ensuring freedom from deadlock.

The display for each player is rendered using a . Pipeline (figure 16). A “database”
process maintains the player’s model of the world as a BSP tree [86] (simulated in
occam 2 using an array), which allows the polygons in the world to be rapidly sorted
into depth order for rendering. The database emits a stream of polygons in depth
order for each frame. These are first transformed to match the player’s viewpoint,
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Figure 15: The ring architecture of Flightsim (from [17])

Figure 16: The rendering pipeline for a single player in Flightsim (from [17])
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then clipped in all three dimensions to match the visible area. The polygons are then
distributed to four shader processes, each of which is responsible for rendering part of
the screen (. Fan-Out); the shaders send partial frames to a final process that merges
them together and updates the graphic display.

In addition, each player has a “user interface” process, which reads the player’s
joystick and buttons and sends appropriate signals to the ring control process. For AI
players, this process is responsible for computing the player’s flightpath.

The original INMOS system was distributed across eleven Transputer processes
per player, with some driving dedicated hardware for the input devices and display.
However, it has been recently adapted to run on a regular PC using KRoC, with minor
modifications to use the sdlraster module for portable video output and keyboard in-
put. Multiple human players are not yet supported under KRoC. It would be relatively
straightforward to add network play using Trap (section 3.3.5), although the increased
latency of TCP/IP communication over the original Flightsim’s Transputer links in the
ring would significantly slow down the simulation. Replacing the ring with a cen-
tral server that only broadcast changes to data would significantly reduce the number
of communications necessary, and allow the rendering to be decoupled from the data
communication.

3.2 occam-X11

The X Window System is the standard low-level graphics system used on Unix-like
machines [266]. Applications (“X clients”) communicate with displays (“X servers”)
using local or network connections, allowing a single X display to contain applications
running on several different machines. Version 11 of the X protocol, X11, was stan-
dardised in 1987, and provides an extension facility that allows newer features to be
defined as protocol extensions that clients and servers may optionally support. As a re-
sult, X11—with a number of widely-supported extensions such as GLX, XRender and
XVideo—is the low-level protocol used by modern toolkit libraries such as GTK and
Qt, and thus the foundation of all modern Unix windowing systems. The reference
implementation of the X server and the basic libraries needed by X clients have always
been open source software, available under a permissive license.

In 1987, less than two years after the introduction of the Transputer and occam,
researchers at the University of Kent at Canterbury found themselves in need of a
windowing system for the Meiko Computing Surface [137] and other Transputer-based
systems—which provided plenty of computing power and high-performance bitmap
graphics for several users at once, but came with no tools to support the construction
of the complex GUIs becoming popular on other systems. They quickly settled on the
X11 standard being adopted by other scientists and engineers, but found the Meiko
C compiler “incapable of making any significant headway when presented with the
public-domain X sources” [260].

Instead, they chose to implement an entirely new X server using occam, which
would allow them to take advantage of the Transputer’s parallelism and high-per-
formance communication facilities. This is an unusual strategy, since most X servers
are based on the C reference implementation. The resulting X server was constructed
using the . Client-Server pattern—the design rules for which were developed during
this project, making occam-X11 the first client-server occam program. (It was also one
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of the first programs to explicitly describe its design as “process-oriented” [261].)
The X server’s functionality is divided among a number of server processes (fig-

ure 17). The system could be distributed across up to four Transputer processors to
improve performance and make use of distributed memory. A central “window han-
dler” process manages the list of windows on the display, cooperating with a “pixmap
handler” process that caches pixmaps (bitmap images) provided by the clients. The
outputs from these two processes are combined by a . Merge process and fed to a de-
vice driver for the graphics display. Separate processes manage the cursor and the list
of graphics contexts.

The keyboard and mouse each have a device driver process, which feed input
events to the window handler. Timestamps are applied to these events from a shared
clock managed by another process.

Client-server links inside the X server follow the approach used in occam-π, with
two channels carrying request and response protocols. The X protocol itself is carried
over occam channels using variant occam protocols instead of the usual byte-packed
network representation of the protocol, improving type safety and allowing occam’s
usual facilities for processing variant protocols to be used directly upon X messages
at a small performance cost. “Input handler” and “output handler” processes adapt
between the X protocol, where requests and responses may be interleaved, and the
internal client-server interfaces; individual clients are tracked by a “client handler”,
allowing messages to be reordered and combined as appropriate.

The most recent version of the occam language available at the time of develop-
ment was occam 2, which does not support the record types introduced in occam 2.1,
or the recursion, mobility and dynamic memory allocation features provided in occam-
π; the lack of these features considerably increased the complexity of the implemen-
tation [261]. The representation and traversal of the X server’s tree of windows was
a particular problem; in occam-π this would most likely be done using dynamically-
forked processes and mobile channel ends, but occam 2 required the use of a “big
enough” fixed-size array and carefully-designed traversal algorithms.

The project also produced X client bindings for occam, along with a number of
sample occam X applications. While the predicted host of cheap Transputer-based X
terminals never surfaced, the ideas and design approaches pioneered in the design of
occam-X11 were highly influential on later process-oriented systems.

3.3 KRoC

The KRoC project provides the standard development environment for occam-π.
KRoC is an open-source project with more than twenty-five years’ development be-

hind it, derived originally from the tools and libraries provided by INMOS for Trans-
puter development. KRoC now includes a compiler (occ21), runtime systems for large
and small devices (CCSP and the Transterpreter), several ancillary tools (occbuild, oc-
camdoc, ilibr, et al.), a collection of testcases and example programs, and the KRoC
standard library.
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3.3.1 The Module System

Code reuse is achieved in occam-π through the module system, primarily supported by
the occbuild tool. A module is a package of code that may define an arbitrary set of
symbols (types, procedures, constants, protocols, and so on); these symbols are made
available to an occam-π program when it imports the module. Modules may have de-
pendencies upon other modules and upon external libraries. occbuild allows modules
and programs to be built in a uniform way across all occam-π implementations and tar-
get platforms, using the appropriate primitive facilities (such as native and bytecode
libraries) provided by the different implementations.

The standard library is a collection of occam-π modules of various kinds:

• modules used transparently by occam-π compilers to implement particular data
types or wrap primitive operations (such as forall and nocclibs);

• modules required by the occam language specification (such as the IEEE maths
libraries [214]);

• modules that interface to particular external libraries or hardware devices (such
as occGL and avr);

• “pure occam-π” modules, which make up the bulk of the collection.

Modules come from a variety of sources, including several that date back to the
original INMOS occam implementation; some of these are still actively used, and oth-
ers are maintained for backwards compatibility with older occam programs. The oc-
camdoc system is widely used to document occam-π programs and modules [129, 193].

Many modules do not make much use of concurrency—often because they are
bindings to or thin wrappers around external non-concurrent libraries, or they pro-
vide facilities such as string manipulation that are used inside sequential code: that is,
they are used to construct individual processes, rather than process networks. How-
ever, several modules do provide processes or protocols for use in applications; the
case studies here are drawn from those.

3.3.2 General Utilities

The course module is one of the oldest KRoC-specific modules. It provides a set of sim-
ple facilities for new occam-π programmers, and is used in most of the exercises in the
Kent concurrency course—and in a large number of “real” occam-π applications that
need simple I/O, or random numbers, or similar facilities. The course module includes
“Legoland”, which provides simple implementations for teaching of many of the com-
mon types of process listed in section 4.1. (Since these are artificially constructed as
examples, and are not useful in real applications, they will not be discussed further
here.) The Legoland name is fanciful, but KRoC does provide modules for interfacing
with actual Lego when the Transterpreter is running on the RCX and NXT controller
bricks [217]; in these cases, simple producer and consumer processes provide interfaces
to the hardware.

The useful module’s collection of assorted utilities includes a set of tracing proce-
dures that subvert the usual occam-π resource access management model: they allow
the programmer to print a message to the standard error stream without needing the
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corresponding top-level channel. While these procedures are unsuitable for use in real
applications—for example, they provide no way to prevent the output from multiple
processes being interleaved—they have proved extremely useful for “printf debug-
ging” of occam-π programs, since they allow the internal state of processes to be easily
printed without having to otherwise modify the structure of the program. A similar
tracing facility was provided for Transputer occam programs on Meiko systems: the
“supervisor bus”, separate from the usual communication links. occam-π’s debugging
facilities are presently extremely weak; better tools may make these tracing features re-
dundant in the future.

3.3.3 Graphics

As occam-π programs are frequently graphical, several occam-π modules are con-
cerned with bitmap graphics. Bitmap images are usually conveyed around an occam-π
program as the RASTER data type, which is a mobile 2D array of ARGB pixels; mod-
ules provide facilities for loading and saving rasters in various formats, for drawing
graphics onto rasters, and for rendering text. The sdlraster module allows rasters to
be displayed using the cross-platform SDL graphics library [212]. The raster.display

process exported by this module is designed to be used as part of a . Ring, with in-
put and output channels that carry RASTERs; for each blank raster it emits, it expects to
receive one to display.

3.3.4 Operating System Bindings

The file module provides implementations of many of the POSIX library functions. In
POSIX, the getopt function has some hidden internal state, returning a new argument
each time it is called, and so cannot be used safely by multiple threads. The occam-
π equivalent, file.get.options, is instead implemented as a . Producer process that
delivers arguments down a channel.

The selector module provides a process-oriented I/O scheduler built around the
poll system call, which allows a program to wait for I/O on multiple file descrip-
tors [40]. In theory, it should never be necessary to use poll in occam-π, since the
runtime system allows system calls such as read to be called in a blocking way from
a pool of operating system threads [26]—but in practice, this is highly inefficient ow-
ing to thread-switching overhead in programs that need to work with hundreds or
thousands of file descriptors at the same time, such as distributed simulations.

selector provides a server that allows processes to register with it to receive call-
backs when the file descriptors they are interested in become ready for I/O. The server
maintains a set of open sockets, and repeatedly calls poll across the complete set on
the user’s behalf. When a socket becomes ready, the I/O scheduler wakes up an ap-
propriate user process to perform the I/O by communicating down a channel. It then
waits for confirmation that the I/O has been completed, and returns to the poll loop.
The user process may opt to keep the socket in the set (if it expects to perform more
I/O in the future), or to remove it.

The user may add new sockets to the set at any time. This is achieved using a
standard idiom [38]: in addition to the sockets, the poll also waits on the reading end
of a pipe. Writing a character to the pipe will interrupt the poll, allowing it to handle
the user’s request.
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The result is that only the server needs to perform a blocking system call, but the
other processes can still be written in a natural process-oriented style, replacing block-
ing calls with requests to the selector. Processes may block upon socket I/O without
needing to worry about accidentally blocking other processes or incurring the over-
heads of using a separate thread. They may even use choice to wait for any of a set of
sockets to become ready. However, the underlying mechanism used to implement
communications is the more efficient event-based model supported by poll, which
means that very large numbers of sockets can be handled with minimal performance
overheads. The efficiency benefits of event-driven I/O [125] are thus obtained with-
out the . State Machine-style complexity necessary in most programs written around
poll.

Ideally this functionality would be built into the occam-π runtime system—as it
has been in the GHC runtime for Haskell [130]—but the efficiency gain over selector

would be minimal.

3.3.5 Distributed Application Support

The pony module provides transparent networked mobile channel support for occam-
π programs [209]. Pony makes considerable use of internal concurrency, with chan-
nels that become extended across the network being transparently replaced with links
through processes that themselves have a considerable degree of internal concurrency.
The internal processes that parse the occam-π runtime type information values in or-
der to serialise and deserialise occam-π protocols (“protocol handlers”) are written in
C, using the CIF interface [211, 31]; concurrency considerably simplifies the structure
of the processes, which must simultaneously negotiate the structure of the protocols
and handle retractions and errors from their partners over the network.

However, with pony, the communication latency over a CSP channel that has been
extended over a network is very high compared to local communication. This is be-
cause a channel communication must be acknowledged in order to provide the correct
CSP blocking semantics, requiring one or more round trips across the network. Many
applications—such as the CoSMoS distributed simulations and most . Client-Server
systems—do not need full CSP synchronisation semantics; the one-way synchronisa-
tion provided by buffered channels are adequate.

For distributed applications that do not need full occam-π channel semantics, the
trap module provides simpler asynchronous messaging between processes in a dis-
tributed application [201]. The facilities provided are similar to those of Erlang [19]
and MPI’s low-level messaging system [144]: a distributed application consists of sev-
eral hosts (equivalent to MPI ranks), each of which has zero or more receiving ports.
Messages are delivered asynchronously from a host to any port in the system. Mes-
sages are guaranteed to arrive in the order that they were delivered, with the Trap
implementation batching messages to the same destination together internally to re-
duce network communication overheads. In process-oriented terms, ports can be con-
sidered to be infinitely-buffered shared channels. A receiving process may choose to
receive from one port or several; this makes it possible to selectively wait for messages
from a particular set of other processes.

Trap aims to provide a reasonably natural interface for the process-oriented pro-
grammer, allowing them to mix asynchronous communications with regular local com-
munications and timeouts in choice constructs. The programmer uses a client-server
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interface to interact with a communicator process on each host, which supports send and
receive operations; receive immediately returns a mobile channel down which received
messages will be delivered.

Trap uses selector to efficiently multiplex input-output operations between many
network connections. It has been used to implement distributed simulations for the
? CoSMoS project, and to experiment with more efficient MPI-style collective opera-
tions for distributed computation [40].

3.4 RMoX

The RMoX operating system has been under development for several years at the Uni-
versity of Kent, as a demonstration of how process-oriented programming can be used
to build reliable, scalable systems software [22]. occam and Transputers were widely
used for high-performance embedded applications; RMoX aims to allow occam-π and
modern embedded systems to be applied to the same sorts of problems.

RMoX runs on IA32 PCs and PC104 embedded devices—the IA32 limitation com-
ing from KRoC, rather than from any aspect of RMoX’s design. It includes support for
a variety of common hardware, including USB devices and network adaptors.

RMoX is implemented mostly in occam-π, with a small amount of low-level sup-
port code in C and assembler; the KRoC suite is used to compile occam-π into native
IA32 code. It uses a slightly-modified “standalone” version of the CCSP scheduler and
runtime library, with dependencies on a host operating system removed and facilities
for interrupt handling added.

RMoX is highly concurrent, and makes heavy use of mobility and the . Client-
Server pattern: device drivers, filesystems and other system services are server pro-
cesses, and the client-server design rules are used to guarantee freedom from deadlock
and livelock. The RMoX “kernel” processes provide a directory service that allows
other servers to be looked up by name. An occam-π language facility designed specif-
ically for RMoX (MOBILE.CHAN [27]) allows mobile channel bundle ends of any service-
specific type to be returned from the core services to the processes that wish to use
them. The directory service is internally hierarchical: when a connection to a driver is
requested, the kernel will forward the request on to a driver.core process that man-
ages drivers and the hardware resources they correspond to.

When an RMoX application starts up, it is provided with a channel bundle to the
kernel; it can then request whatever other services it needs. This is the traditional ap-
proach for process-oriented programs: indeed, the top-level process interface in the
Transputer implementation of occam provided two channels that were used to com-
municate with a server process running on a host machine.

RMoX uses a flat memory space for all processes, without hardware memory pro-
tection. The onus is therefore on the occam-π compiler—and the programmer—to
avoid contention for shared resources. This has been highly successful so far: RMoX
is built as (effectively) a single large application, so static checking can be applied just
as for any other occam-π program. However, RMoX has no “userspace”: it does not
yet support dynamic loading of (potentially-faulty) user programs. In order to support
this, compiler and runtime extensions will be necessary: options include some form of
lightweight memory protection or compiled code verification [25].
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RMoX is no longer the only process-oriented operating system: Microsoft’s Singu-
larity project uses a very similar approach (section 2.3.6).

3.4.1 Substrates

RMoX was initially built on top of the Flux OSKit [82], a toolkit for IA32 operating
systems development that contains pre-written drivers and filesystems drawn from
a number of open-source operating systems adapted to provide a standard interface.
However, the OSKit has been unmaintained since 2002, and RMoX never made much
use of its facilities beyond booting and memory management. To remove the depen-
dency on the OSKit, a Linux 2.4 kernel was stripped down to provide the equivalent
facilities (“minlinux”); this made RMoX’s build process significantly easier, and im-
proved hardware support during the boot process.

In order to avoid maintaining the cut-down Linux 2.4 tree, a small glue layer was
written that enabled RMoX to be built as a kernel module for Linux 2.6 kernels, with a
userspace “init” process that simply loaded the module. As with minlinux, the result-
ing system was essentially running the CCSP scheduler and all of RMoX inside Linux’s
kernelspace, making use only of the Linux kernel’s memory allocator and low-level
interrupt handling facilities. This remained unsatisfactory, however, since a Linux ker-
nel source tree was still necessary in order to build RMoX—and even a minimal Linux
configuration would still end up building a lot of unnecessary code. In addition, it
was difficult to ensure that Linux’s interrupt handlers and kernel processes were com-
pletely disabled before launching RMoX, which lead to a number of hard-to-diagnose
problems.

The final development was a “bare metal substrate” for RMoX: a from-scratch im-
plementation of a Multiboot-compliant [83] bootstrap, and the minimal code necessary
to set up interrupt handling and timers before launching the CCSP scheduler. A CPU
exception handler is also included, so that the developer gets some “blue screen of
death” information out of the system if it crashes. The resulting substrate is less than
2000 lines of mixed C and IA32 assembler code; it has proven more reliable and easier
to maintain than the previous approaches.

3.4.2 Network Stack

The RMoX network stack represents packets as mobile data values which are routed
around a complex internal network of filters and multiplexers (figure 18). This is a
natural and convenient way of expressing packet-processing systems such as network
routers, since it mirrors the structure of computer networks at the physical level. A
process-oriented router can also be trivially distributed across multiple CPUs or phys-
ical machines if necessary. In addition, occam-π’s compile-time and runtime safety
features are easy to justify in the security- and high-availability-conscious field of net-
working.

The first version of the RMoX network stack was written by the author as an un-
dergraduate project in 2003 [198]. This version included basic support for the IP, UDP
and ICMP protocols. The only network interface devices supported were loopback and
SLIP over serial lines.

The original network stack was developed as a standalone program under Linux,
and later integrated into the RMoX services framework. It was written at a time when
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Figure 18: The original design of the RMoX network stack (from [198])
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KRoC’s support for the occam-π language extensions for mobility was relatively im-
mature, and as a result several occam-π features—in particular, forking and dynamic
arrays—were used only sparingly in the code.

As part of the present work, the network stack was significantly overhauled to
make better use of occam-π, and extended to support Ethernet devices, and the ARP
and TCP protocols. This made RMoX’s network stack useful for practical applications.
The majority of development was performed using the “usermode RMoX” frame-
work [22] in which RMoX runs as a regular process under Linux; an Ethernet device
driver was developed for RMoX that used Linux’s “tap” emulated Ethernet device.

The TCP implementation was based directly upon the state machine described in
the TCP specification. Each active TCP connection is managed by a tcp.worker process,
the internal state of which corresponds roughly to the per-connection block described
in the RFC. A tcp.server process handles incoming TCP packets and routes them to
the appropriate worker; for each active port, it maintains a channel that connects to the
appropriate worker process (figure 19). Workers are forked off by tcp.server when a
new outgoing connection is requested by a user program; when a user program wishes
to bind a port to receive incoming connections, a tcp.listen.worker process is forked
off that starts new tcp.workers in response to inbound connections.

The interface used for bidirectional streams such as network sockets and pipes in
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RMoX is by necessity asymmetric in order to conform to the client-server design rules:
the client may send a message directly to write, but must send a request (which may
block for an indefinite amount of time) in order to read. It is complicated by the ability
of communication in either direction to fail at any time: either a read or write may
return an error or an end-of-stream indication. Reads and writes are arbitrary-length
arrays of bytes rather than individual characters, both for efficiency and to support
datagram protocols such as UDP using the same interface.

RMoX provides a command-line interface for starting applications and configur-
ing the system. A server was constructed for the telnet protocol which allows re-
mote access to the RMoX console. The server binds a local socket, and forks off a
telnetd.worker process for each incoming connection. The worker contains a two-way
buffer that maps the client-server protocol used on network sockets into simple chan-
nels of bytes as required by the existing console interface, grouping bytes into packets
and handling error and end-of-stream messages in either direction.

The Ethernet implementation uses a eth.adapter process for each network inter-
face, and a shared arp.cache process that maps Ethernet addresses to IP addresses.
When an adapter receives an inbound IP packet from the network, it forwards it to the
network routing core; when it receives an ARP packet, it stores the information in the
ARP cache. When an adapter receives an outbound IP packet from the routing core, it
looks up the destination address in the cache. If the corresponding Ethernet address is
known, it sends the packet immediately; if it is not known, it sends an ARP request,
and forks off a process that waits for a corresponding ARP response before sending the
IP packet.

The RMoX network stack is not yet complete. While it has been shown to inter-
operate successfully with stacks from several other operating systems, its TCP imple-
mentation in particular is rather limited: it does not implement any of the extensions
to the TCP protocol that more recent stacks use for better throughput and resistance to
network congestion, and its retry algorithm is extremely simplistic.

An occam-π-friendly network stack is potentially of interest to programmers build-
ing distributed systems in occam-π, since it would reduce the overheads of distributed
channel communications—as implemented in pony [210], which was designed with
portability in mind. In RMoX, the network stack’s internal processes can be sched-
uled and prioritised along with other occam-π processes. Memory copying overheads
can also be avoided, since mobile data can be carried safely from the application right
through to the network interface hardware—true “zero-copy”.

The network stack at the moment has a number of bottlenecks that prevent it from
being fully parallelisable: for example, the IP checksum checker. It would be possi-
ble to farm checksum calculation out to a number of worker processes (ideally one
per physical CPU). As many programs will operate more efficiently if packet order
is maintained, it may be worth introducing some sort of internal sequence number or
high-precision timestamp on packets so that they can be reordered before being passed
to user processes.

3.4.3 USB Stack

Carl Ritson implemented a USB stack for RMoX [24]. USB presents a number of inter-
esting challenges to operating system developers: USB devices may be connected or
disconnected at any time, USB hubs can be used to construct an arbitrarily complex
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tree of devices, devices have varying power requirements and communication speeds,
and devices can have multiple interfaces which may conform to a standard “device
class” or be proprietary. In addition, many common USB devices implement the USB
specification poorly—with the result that a host implementation must handle misbe-
having devices gracefully.

The RMoX USB implementation provides a low-level USB host controller driver,
and a higher-level usb.driver process that maintains a tree of individual device pro-
cesses corresponding to the current physical structure of the connected devices. Class-
and device-specific drivers can request various types of connections to USB devices
from usb.driver. (This description is somewhat simplified; for full details, see [24].)

In addition, a dnotify service was added to the RMoX driver core that distributes
notifications of devices being connected and disconnected. Any process may register
its interest in insertion or removal events involving particular types of device, and
dnotify will notify it as appropriate. Typically, a driver for a USB device will start a
worker process for each device as it appears.

As with the network stack, mobility is used to reduce the need for copying data.
The CCSP runtime was extended to support allocation of (selected) mobile data in
DMA-capable memory, which allows the host controller driver to transfer data directly
from the mobiles allocated by drivers for USB devices—or, in some cases, allocated by
user processes.

3.5 TUNA

The TUNA project—Technology Underpinning Nanotech Assemblers—ran from 2004
to 2006, with investigators and students from the Universities of York, Kent and Sur-
rey: it was a pilot study investigating approaches for engineering emergent behaviour.
TUNA’s primary case study was the design of behaviours and communication strate-
gies for (hypothetical) artificial blood platelets that could clot to heal wounds [230], but
a number of simpler complex systems were also considered; in particular, considerable
work was done using cellular automata [231, 203]. The project experimented with a
variety of techniques for designing, simulating and reasoning about the correctness of
complex systems.

The occam-π programming language was used as the primary implementation lan-
guage for simulations within TUNA. As the CSP process calculus was being used to
model and formally verify the behaviours of agents, choosing a process-oriented lan-
guage allowed direct correspondence between the formal models and the practical im-
plementations in the simulations. occam-π’s excellent performance and support for
very large numbers of processes made it possible to run large-scale simulations. Sev-
eral occam-π features were added or enhanced as a result of its use within TUNA;
in particular, language support for barriers was added during the course of TUNA,
allowing them to be used to directly model CSP events [29].

3.5.1 Life

Cellular automata (CAs) are some of the simplest, most predictable examples of com-
plex systems in which large numbers of autonomous entities exhibit emergent be-
haviours; as a result, most of the early work done by the TUNA project was carried
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Figure 20: Five generations of a Life glider; black cells are alive

out using CAs.
While CAs are significantly simpler than the sorts of devices TUNA aimed to mo-

del—for example, they have little state, usually operate upon a regular grid, and have a
common clock—they provided a good starting point for modelling approaches. TUNA
examined several sequential and parallel approaches to simulating cellular automata
efficiently using process-oriented techniques [203].

The major desirable feature for a CA simulation is that very large scales can be
achieved. This means that it should execute as fast as possible and use as little memory
as possible—ideally, taking advantage of both multicore processors and distributed
clusters of machines.

One of the best-known CAs is John Conway’s Game of Life, usually referred to sim-
ply as “Life” [88]. First discovered in 1970, Life produces startling emergent behaviour
using a simple rule to update the state of a rectangular grid, each cell of which may be
either “alive” or “dead”. All cells in the grid are updated in a single time step (“gener-
ation”). To compute the new state of a cell, its live neighbours are counted, where the
cell’s neighbours are those cells that are horizontally, vertically or diagonally adjacent
to it. If a cell was dead in the previous generation and has exactly three live neigh-
bours, it will become alive; if it was alive in the previous generation and does not have
either exactly two or exactly three live neighbours, it will die.

Thirty-five years of research into Life have produced a vast collection of interesting
patterns to try. Simple arrangements of cells may repeat a cyclic pattern (“blinkers”),
move across the grid by moving through a cyclic pattern that ends up with the origi-
nal arrangement in a different location (“gliders”—see figure 20), generate a constant
stream of other patterns (“guns” and “puffer trains”), constantly expand to occupy
more of the grid (“space-fillers”), or display many other emergent behaviours. Life is
Turing-complete; it is possible to create logic gates and Turing machines [1].

Life has some features which allow it to be simulated very efficiently. The most im-
portant is that cells only change their state in response to changes in the neighbouring
cells; this makes it easy to detect when a cell’s state must be recalculated. The new state
rule is entirely symmetric; it does not make a difference which of a cell’s neighbours
are alive, just that a given number of them are, so the state that must be propagated be-
tween cells does not need to include cell locations. Finally, the new state rule is based
on a simple count of live neighbours, which can be incremented and decremented as
state change messages are received without needing to compute it from scratch on each
cycle. These features are not common to all CAs—and certainly did not hold for some
of the models that TUNA investigated—but are nonetheless worth investigating from
the implementer’s point of view; if such a feature makes a system especially easy to
simulate or reason about, it may inform the design of other emergent systems in the
future.
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Figure 21: TUNA Life simulation, with OpenGL visualisation

3.5.2 Simulating Life

A CA simulator takes an initial state of the world as input and performs the CA rules
on it repeatedly, giving the state of the world at each timestep as output. The TUNA
implementation of Life provided a simple simulation framework into which multi-
ple simulation “engines” could be plugged to experiment with different approaches.
The framework provided facilities for loading Life patterns from files and generating
random patterns, for visualising the state of the Life grid using an OpenGL-based 3D
representation (figure 21), and for measuring the performance of the simulation en-
gine.

The simplest approach to simulating Life is to walk over the entire grid for each
generation, computing the new state of each cell and writing it into a second copy of
the grid, which is later exchanged with the first. This algorithm is O(N), where N is
the number of cells in the grid, and has excellent cache locality, so it performs well on
a conventional process, or a vector processor or GPU. It can be trivially parallelised
by dividing the grid into several fixed-size chunks, and having the new states for each
chunk computed by different parallel processes.

As the majority of existing Life implementations are sequential, some techniques
have been devised to speed up simulation. One such is Bill Gosper’s HashLife algo-
rithm [93], which computes hash functions over sections of the grid in order to spot
repeating patterns. The performance depends on the type of pattern being simulated;
patterns with many repeating elements will perform very well, but the worst-case be-
haviour (where the pattern progresses without repetition) is worse than the simple
approach, since hash values are being computed for no gain.

The simplest process-oriented approach to simulating Life is to break the problem
down into the simplest flows of control: have each cell in the grid represented by a
process, with channels between them to allow each process to communicate its state
to all its neighbours (figure 22). Connections are wrapped around at the edges of the
grid, making the world topologically equivalent to a torus. Wiring up this kind of
network programmatically is complicated in occam-π, but can be made easier using
higher-order programming techniques [48].

Each cell process is written using the . I/O-PAR approach: on each timestep, in
parallel, it outputs its current state to all its neighbours, and inputs its neighbours’
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Figure 22: Grid of cell processes with interconnecting channels

states. Once the exchange is complete, the cell can compute its new state using the Life
rules. The I/O-PAR approach guarantees liveness [257], and means that there is no
need for an external clock to ensure that timesteps do not overlap; the grid is naturally
synchronised.

This approach is very inefficient compared to the sequential or trivially-parallel im-
plementations, however: it is doing all the computational work of these simple imple-
mentations, and in addition it is performing a huge number of communication oper-
ations. In most cases these communications are carrying redundant information since
the state of cells (especially empty cells in areas of the grid where there is no activity)
has not changed.

We can build a more efficient process-oriented simulation by removing redundant
communication: have cells only communicate their state when that state has changed,
and have cells only recalculate their state when the state of one of their neighbours has
changed—. Lazy Updates. This means that we cannot use I/O-PAR any more. Fur-
thermore, it is possible that two groups of cells which are active may not be in contact
with each other, so the inter-cell communications cannot provide the “generation tick”.

Time synchronisation can be provided using the . Clock pattern: all cells are en-
rolled upon a barrier, synchronising once per timestep. As cells’ states are only commu-
nicated when they change, a cell must be able to tell that it has definitely not received a
state change from a neighbour. To do this, we can use buffered channels along with the
time barrier, allowing sending and receiving of states to be decoupled. At the start of
each timestep, each cell checks to see whether a message is waiting on any of its input
channels; if none is waiting, the corresponding neighbour’s state has not changed. The
resulting code is shown in figure 23. (Note that the lazy-updates approach was later
refined to not require buffered channels; see figure 59 for the updated approach.)

We have reduced the number of communications to only those necessary, but all
processes must still run on every timestep, even if only to check that they do not need
to recompute their state. The system as a whole is still . Polling rather than event-
driven.

To fix this, we make processes resign from the barrier when they detect no changes
from the cells around them during a cycle, and sleep until they receive a change notifi-
cation. Cells therefore truly run only when necessary—changes made to the grid will
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PROC cell ([8] BUFFERED (1) CHAN BOOL inputs?, outputs!,

CHAN BOOL changes!, BARRIER bar ,

VAL BOOL initial.state)

INITIAL BOOL my.state IS initial.state:

INT live.neighbours:

SEQ

... do an I/O-PAR exchange to count

initially -alive neighbours

WHILE TRUE

BOOL new.state:

SEQ

... compute new.state based on live.neighbours

IF

new.state <> my.state

PAR -- state changed

my.state := new.state

PAR i = 0 FOR 8

outputs[i] ! new.state

changes ! new.state

TRUE

SKIP -- no change

SYNC bar

SEQ i = 0 FOR 8

PRI ALT

BOOL b:

inputs[i] ? b

... adjust live.neighbours

SKIP

SKIP -- just polling

:

Figure 23: Code for one lazily-updated Life cell
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ripple across the cells that they affect, waking up only those cells necessary to recom-
pute the new state of the grid. One interesting outcome of this approach is that the
process network will deadlock if the grid reaches a stable state—one where nothing
is able to change—because all processes end up waiting for channel communications
that they will never receive.

While this improvement is simple to describe, it is somewhat difficult to implement
in practice, since cells must atomically re-enrol upon the barrier when they are woken
up by another cell changing state—that is, they must ensure that they always wake up
inside the correct timestep. For TUNA, this was achieved using an ad-hoc approach
(forcing process priorities) that would not work in more recent versions of KRoC.

Mobile barriers provide a more elegant solution to this problem. When a cell sends
a message to another cell to wake it up, the message should include a new enrolment
upon the timestep barrier. If the receiving cell is already awake, it is already enrolled
upon the barrier and can discard the new enrolment; if it is being woken up, it has been
safely enrolled upon the barrier, and can immediately synchronise and poll its inputs
to collect any other changes.

This optimisation causes a significant performance improvement, since only active
cells occupy CPU time: a small glider moving across a huge grid will only require the
cells that the glider touches to run. For typical patterns, performance is now rather
better than a sequential simulation of the same grid, and the performance is much
better than the first parallel approach described: after fifty generations on a randomly-
initialised large grid, this approach was a factor of 15 faster than the original approach,
and the relative performance increases further as the number of active cells decreases.
However, it still uses far more memory than the sequential approach, as there is a
dormant process for each grid cell with a number of channels attached to it.

Since Life cells do not care about which neighbouring cell a change message was
received from, we can use shared channels rather than individual channels. The ap-
proach is simply to replace the eight channels coming into each cell with a single shared
channel; each of the eight neighbouring processes can send to the shared channel. This
reduces the simulation’s memory usage somewhat—and it significantly simplifies the
“wiring” of the grid, making it easier to experiment with alternative topologies such
as Penrose tilings [159].

We can do away with the other memory overhead—the dormant processes sitting
around—by forking processes . Just In Time: rather than resigning from the barrier
when nothing is going on, processes would actually exit and hand the end of their
input channel off to a . Factory “ether” process, representing empty space. The ether
could then respawn the cell process when it was next needed. (This approach was
never implemented as part of TUNA, although it was applied later in CoSMoS.)

As a final optimisation, we could scale up from individual cell processes to pro-
cesses that represent groups of cells. The choice of internal implementation within each
group could then be made based on the behaviour of the cells—for example, HashLife
could be used when repetitive behaviour was detected.

3.5.3 Blood Clotting

Blood clotting (haemostasis) is an emergent behaviour. Wounded tissue emits chem-
ical clotting factors into the bloodstream. Platelets, which are always present in the
blood, become sticky in response to encountering clotting factors. Sticky platelets tend
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Figure 24: TUNA blood clotting simulation

to clump together and adhere to the tissue around the wound, slowing and eventu-
ally staunching blood loss. TUNA’s experimentation with haemostasis proceeded in
several stages.

Initial efforts focused on platelets as cellular automata in one, two and three di-
mensions [170], following simple, deterministic rules. The same behaviours were then
implemented using CSP||B, an integrated modelling approach where the interactions
between B machines are specified using CSP [229]; the CSP elements were model-
checked using FDR to guarantee liveness [207], and the simulation then implemented
using occam-π [255, 259]. This model was unexpectedly complex, with much of the
complexity coming from the rules necessary to ensure that clumps of platelets moved
together, with each platelet “dragging” the next along.

The model was then extended to include clots as explicitly-modelled entities [187].
A clot is a super-agent, composed of a group of cooperating agents; when two clots
collide, they merge to become a single clot. Various approaches were experimented
with for this, including a solution using occam-π’s mobile channels as “tails” for the
clots, allowing clots to communicate directly using a . Private Line [254].

Later extensions to the model included the addition of platelet activation, along
with diffusion of chemical factors; factors were also represented as agent processes.
This final model was implemented in occam-π, making use of the . Client-Server pat-
tern, along with . Phases to control access to a shared-memory array that represented
the contents of 3D discretised space in a compact format. Visualisation and interac-
tion were achieved using the volumetric rendering facilities of the VTK library [208]
(figure 24).

This simulation was then distributed across a cluster of PCs using pony, with care-
ful attention paid to batching of communications to reduce latency effects. The shared-
memory array was divided into equal-sized cubes, with adjacent cubes overlapping
by a few voxels; “border” processes ensured that the duplicated volumes were syn-
chronised correctly, and agents entering the duplicated areas migrated to the correct
host. The resulting simulation could support interactive simulation with hundreds of
thousands of platelets in a volume of forty million locations.
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3.6 occvid

occvid is an occam-π framework for capturing, manipulating and playing back mul-
timedia streams [185]. Media processing frameworks are often structured as a collec-
tion of components that can be connected into a . Pipeline or an arbitrary graph—
GStreamer and DirectShow are widely-used examples—but few make use of concur-
rent programming techniques to permit efficient scheduling and parallelisation, let
alone to ease implementation. The Kamaelia project is a notable exception: a media
processing framework originally developed by BBC Research and Development, it is
built upon a flexible message-passing concurrent runtime constructed using Python’s
generator facilities [219]. occvid was built to explore the possibilities of media process-
ing with the mobility facilities provided by occam-π.

Like most multimedia frameworks, occvid consists of a library of processing com-
ponents, which are modelled as occam-π processes. Components provided include:
video and audio codecs (encoders and decoders); readers and writers for various mul-
timedia container formats; input components that read video from DV devices and
webcams; output devices that display video frames and play audio frames; and utility
processes that synchronise clocks between different processes, process user input, and
manage the starting and wiring up of other components.

All multimedia data in occvid is carried as mobile data. When running on top of
a conventional operating system, data need only be copied when passing in and out
of occvid (from or to a hardware device); if run as part of RMoX, occvid could operate
in a true zero-copy mode with processes operating on hardware buffers directly. The
performance advantages of this approach are significant given the high data rates typ-
ical in video-processing applications—especially so for high-definition video. The low
cost of communication in the CCSP runtime means that occvid’s performance is com-
parable with that of the best conventional frameworks when only a single processor
is used, and CCSP’s parallel scheduling means that better performance is obtained on
multicore systems.

Packets of data—which may be raw audio or video frames, or compressed data in a
format supported by occvid’s codecs—are carried between components using occam-π
channels. All packets carry a high-resolution timestamp to allow accurate synchroni-
sation of streams with each other and with output devices. Two models of communi-
cation are supported:

• CT.MM, a “push” protocol where data flows from input to output;

• CT.MM.SEEKABLE, a more complex “pull” two-way protocol where data is explicitly
requested by the receiving process, and which allows the receiver to request that
the sender seek to a different position in the media stream.

The push protocol is designed for simple applications where data is being pro-
cessed in bulk; it makes implementing new components very straightforward, and
allows processes to be arranged into a . Pipeline to process data in parallel with no
additional buffering necessary. The pull protocol is intended for interactive applica-
tions such as video players (figure 25); it allows efficient movement between different
points in the video stream, with the entire processing graph controlled by the compo-
nent at the output end of the graph. However, since the pull protocol requires that
each component obtain an explicit response from its source for each request it makes
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Figure 25: An interactive video player using the pull model (from [185])

(effectively a . Client-Server approach), only one component may be processing data
at a time: parallel processing requires that explicit . Buffer processes be introduced.

For components that follow the . Filter pattern, such as codecs, an adapter pro-
cess, seekable.wrapper, is supplied to make a CT.MM (push) filter available through a
CT.MM.SEEKABLE (pull) interface. The push protocol was carefully designed to make this
possible, with a “purge” operation that allows the state of a push component to be
reset when the stream it is processing is seeking. The result is that most components
can be implemented using the push protocol, being wrapped into the pull protocol as
necessary for interactive applications.

occvid makes use of “zero-place buffer” processes, which allow one component to
efficiently wait for another to be ready to process data. A zero-place buffer sends a do-
nothing message using the push protocol and returns a notification once it is accepted;
this is effectively simulating choice over output using the “requester” approach often
used to implement buffers in occam-π (see figure 47).

occvid makes use of channel end mobility to allow the processing graph to be dy-
namically configured at runtime, which has a number of applications. For example,
most multimedia container formats can contain varying numbers of audio and video
streams compressed with a wide variety of codecs. Dynamic reconfiguration allows
occvid to start up and connect the appropriate codecs to process a file’s streams once it
has been opened and its headers read. This allows a video player to be constructed that
can play files in any format supported by occvid, with any configuration of channels.
Another example application is a video editing system that captures video from cam-
eras; occvid is able to start up the appropriate processes to read video from a camera
when it is connected to the computer.



CHAPTER 3. CASE STUDIES 70

3.7 LOVE

LOVE is a framework for music synthesis, audio processing and live programming in
occam-π.

Audio Synthesis and Process Orientation

Electronic music would be more appropriately called computational music: generat-
ing and processing sound using mathematical operations. Electronic synthesisers date
back to the 1940s, with the Hammond Novachord being a notable early example that
generated polyphonic sound using oscillators, dividers and filters—all implemented
using analogue electronics, in much the same way that contemporary analogue com-
puters were processing abstract data using analogue techniques. Digital techniques
were applied to sound synthesis as soon as they became available, with work done on
UNIVAC I as early as 1951, and considerable progress made at Bell Labs in the early
1960s. When microprocessors appeared in the 1970s, synthesisers were some of their
first applications, initially for control of analogue components and then for increas-
ingly complex processing and direct digital synthesis of sound in systems such as the
Synclavier and Fairlight CMI.

Today’s electronic musicians primarily work with “soft synth” software running
on general-purpose computers, sometimes augmented with DSPs or other specialised
processing hardware; today’s high-end keyboards are often PCs running a conven-
tional operating system such as Windows or Linux. User interfaces and programming
models remain heavily influenced by the conventions of analogue synthesis, however.

A typical synthesiser starts by generating “pure” waveforms using oscillators [176].
In theory any sound may be built up simply by combining sine waves—but in practice,
it is more convenient to start with a wider range of timbres (sine waves, square waves,
triangle waves, white noise, and so on). Alternatively, it may replay samples captured
from a recording, or use the sound from another instrument (such as voice or electric
guitar) as a source waveform in real time.

The synthesiser then applies operators to modify and combine waveforms. Opera-
tors may include amplification, filters that affect particular frequency bands, mixing,
distortion, modulation, delays, compression, limiting, and any other functions that can
be described mathematically. The frequencies and durations of notes, as well as the
parameters of the various operators applied to them, are often controlled using a stan-
dard protocol such as MIDI [138] or OSC [265], allowing synthesisers to be connected
together and orchestrated by a single player or application.

Electronic musicians tend to think of synthesiser configuration in terms of connect-
ing up boxes. For analogue synthesisers, this was literally true: a modular synthesiser
consists of a collection of different electronic devices, each of which implements one
component of a synthesiser, and which may be connected (and expanded, modified,
and so on) in any way the musician desires. Modular synthesisers are widely con-
sidered to be intuitive and highly flexible; as a result, the configuration interfaces for
many soft synths, hardware synthesisers, and general audio processing frameworks—
such as Pure Data [175] and Max/MSP—mimic the physical interface of a modular
synthesiser.

Electric guitarists are also familiar with this approach: guitar effects boxes follow
standard interfaces that allow them to be connected together in arbitrary ways, with
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PROC amp (CHAN SIGNAL in?, VAL REAL32 factor ,

CHAN SIGNAL out!)

WHILE TRUE

SIGNAL s:

SEQ

in ? s

out ! signal ([i = 0 FOR BLOCK.SIZE | s[i] * factor ])

:

Figure 26: The OAK amplifier process, which multiplies samples by a fixed value

many guitarists using several different effects to provide them with a variety of differ-
ent tonal qualities.

At a superficial level, this approach to the design of audio processing systems bears
a strong resemblance to the graphical techniques used to design process-oriented sys-
tems: operators are processes, lines are channels, and so on. This suggests that musi-
cians and audio engineers may be potential users of process-oriented techniques; they
would certainly agree that building reliable, scalable systems is important. Further-
more, audio engineers are acutely aware of the problems caused by format and range
errors in their “data”, and of the effects caused by cycles in their networks.

However, digging deeper into the semantics of these systems reveals ways in which
the usual semantics of audio synthesis systems differ from those provided by process-
oriented frameworks—especially those provided by synchronous channels. For exam-
ple, musicians often expect to be able to reconnect the cables between their synthesis
operators while the synthesiser is in operation—and without causing their synthesiser
to deadlock or even interrupt its audio output. LOVE was built to explore the possi-
bilities of process-oriented software in the field of audio synthesis and manipulation,
and to see how these mismatches could be addressed.

OAK

The first prototype of LOVE was OAK: the occam-π Audio Kit. OAK provides a li-
brary of processes that correspond to the fundamental components of an audio pro-
cessing system described above: oscillators, operators, processes to interface to the
computer’s sound and sequencer hardware and to visualise waveforms graphically,
and utility processes (such as . Buffer s and . Delta s) to help wire up the process net-
work. Channels—which correspond to the patch cords in a modular synthesiser—may
carry audio signals, or control signals such as oscillator frequencies. Some operators
may usefully be applied to either type of signal—for example, adding the output of a
low-frequency oscillator to a frequency control signal results in a vibrato effect. More
complex operators can be built from simpler operators: a delay line can be used to
implement a comb filter or an echo effect [176].

For simplicity, OAK is entirely deterministic, with channels carrying SIGNALs—
fixed-size mobile arrays of samples—and processes written in an . I/O-SEQ style. Ev-
ery process in the system therefore loops S/N times per second, where S is the sample
rate (typically 44,100 samples per second) and N is the array size. The resulting pro-
cesses are usually very simple (figure 26).

The most complex process in OAK is the sine-wave oscillator, since it must handle
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smoothly changing frequency while maintaining an accurate frequency and waveform
on its output; accurate oscillators are necessary for good-sounding audio synthesis,
and there are standard techniques for implementing software oscillators with minimal
distortion [223].

To control the synthesis components, OAK includes a simple sequencer. occam-π
is a fairly natural language for writing music in, since conventional music notation is
primarily concerned with representing sequential and parallel composition, and repe-
tition. A piece of music in OAK is thus an occam-π program which generates a series of
MIDI-like note messages down channels. Adaptor processes convert these messages
into frequency and trigger messages on control channels, analogous to the CV and
Gate voltage inputs on analogue synthesisers. Processes are also provided that convert
keypresses and MIDI events to notes, to allow OAK to be played as a conventional
synthesiser.

Live Programming

Artists have been creating sounds and music by writing software since the 1950s, and
since the early 1980s programming has been an important part of mainstream elec-
tronic music. Programming is not normally done as part of a performance, however.

The live programming movement aims to change this by making the construction
and manipulation of software part of a live musical performance [228]. An audience
member does not have to be able to play a conventional instrument to appreciate a con-
ventional live performance. Live programming—encouraging synthesiser performers
to do more of their construction on stage, and make what they are doing more visible
to the audience, for example by attractive visualisations of their synthesis systems—
tries to involve audiences in the same way, breaking down the common image of the
electronic musician hidden behind a wall of keyboards. Live programming also of-
fers the musician more opportunities for improvisation in terms of tonal qualities and
generated music, and can allow improvised musical performances to be more closely
integrated with visual stage effects such as video and lighting.

Live programming presents a number of interesting challenges. Environments for
live programming must be highly expressive, allowing significant changes to be im-
plemented rapidly. They must allow incremental changes to be made to a running
program, with control over when changes take effect. They must be robust against
programmer error. They need to support soft real-time operation, avoiding output
glitches and timing problems; in many cases they need to be able to synchronise their
output against external tempo and audio clock sources. Finally, they must provide a
development environment conducive to live programming.

Several environments have been developed for live programming—both based on
existing languages such as Scheme and Perl, and with entirely new syntaxes, both
graphical and textual. For example, the ChucK programming language is designed
for “on-the-fly” audio processing [239], and provides a variety of highly-sophisticated
facilities for concurrent programming. ChucK processes are called “shreds”, and are
cooperatively scheduled. The syntax is extremely compact, with a single operator =>

that is used for time synchronisation, assignment, building pipelines and communi-
cating between processes. ChucK uses a . Clock-like approach to time management,
with a global timer now that only advances as processes attempt to synchronise with it.

The challenges of live programming can be met by a process-oriented environment,
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Figure 27: LOVE’s user interface, editing a complex synthesis network

but OAK clearly could not be used directly: the occam-π programming language is
inappropriate for live programming, because it is not very expressive, it is not visu-
ally attractive enough to involve the audience, and it is necessary to recompile and
restart the OAK program whenever changes are made. LOVE—the Live occam-π Vi-
sual Environment—was an extension and redesign of OAK to support live program-
ming.

From OAK to LOVE

LOVE uses the same approach to modelling synthesis components as OAK—processes
connected by channels—but provides a visual environment that allows the program-
mer to connect up and configure their components using a simplified form of process
diagrams (figure 27).

The live programmer picks components from a palette to add to the canvas, and
connects them up by drawing channel connections between ports on the components,
which are coloured according to the types of data they carry (control messages or au-
dio systems). While connections are being drawn, the user is given immediate visual
feedback on which ports may be safely connected. The visual environment applies
standard process-oriented design rules in real time to prevent the programmer from
constructing incorrect or unsafe programs: for example, the programmer cannot con-
nect two ports of different types, or create an unsafe cycle (see . I/O-SEQ) in the net-
work of components.

Ports are implemented using the . Terminal pattern. Each output port may be con-
nected to multiple inputs, but each input may only be connected to a single output.
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PROC amp.component (PROC.CTL? ctl)

PROC amp (CHAN REAL32 factor.in?, CHAN CHUNK in?, out!)

... conventional Valve process , as in OAK

:

STREAM.WIRE? inw:

STREAM.WIRE! inw.c:

PORT.CTL? outp:

PORT.CTL! outp.c:

PROC.UI? ui:

PROC.UI! ui.c:

SEQ

ctl[resp] ! reg.counts; 1; 1

inw , inw.c := MOBILE STREAM.WIRE

ctl[resp] ! reg.stream.in; inw.c

outp , outp.c := MOBILE PORT.CTL

ctl[resp] ! reg.stream.out; outp.c

ui , ui.c := MOBILE PROC.UI

ctl[resp] ! reg.ui; ui.c

ctl[resp] ! reg.done

CHAN REAL32 factor , factor.b:

CHAN CHUNK thru:

CHAN VEC.EVENT e0:

CHAN MOBILE []VEC.ENTRY g0:

PAR

value.widget (ui[event]?, e0!, g0?, ui[disp]!,

0.1, 0.1, 0.8, 0.8,

1.0, factor !)

overwriting.buf.real32 (factor?, factor.b!)

dump.events (e0?)

amp (factor.b?, inw[c]?, thru!)

stream.port (thru?, outp) -- Terminal process

:

Figure 28: LOVE amplifier component

Input ports are mobile channels, with the input end of the channel registered with a
central manager process (an . Oracle). Output ports are buffer processes which broad-
cast the values they receive to a set of channel ends. The manager process has a mobile
control channel to each buffer process, through which it can instruct the buffer to con-
nect and disconnect channel ends. The channels themselves are strongly typed at the
occam-π level as well as in the user interface. A LOVE component is essentially an
OAK component with wrapper processes attached to its input and output channels,
and GUI elements added to control parameters (figure 28).

The standard process-oriented design rules can be used to analyse a LOVE network
in real time because we know how the LOVE network will be translated into occam-π
processes: each output buffer introduces a stage of buffering, but follows the I/O-SEQ
rules itself. We have thus engineered a higher-level communication facility that still
allows the usual process-oriented approaches to design to be used.



CHAPTER 3. CASE STUDIES 75

The manager process is also responsible for starting and connecting up compo-
nents dynamically in response to requests from the LOVE GUI (it is a . Factory), and
for checking the design rules that determine whether connections are safe. (It does not
itself care about the data that channels carry; it only has an abstract idea of channel
types.) The manager process is decoupled from the GUI: it would be equally possi-
ble to build a “headless” LOVE system that constructed and connected components
based on a configuration file, or MIDI or Open Sound Control messages from another
application.

LOVE’s graphical user interface is itself an interesting piece of process-oriented de-
sign. Many of the audio processing components expose some set of adjustable param-
eters, or provide some sort of visualisation. For example, one component is a simple
sequencer that stores a series of notes to play; the component’s visual representation
includes a display of how many notes it has stored and where it currently is in its play-
back sequence, and a number entry box that controls the rate at which notes are played
back. Another emulates an oscilloscope, displaying audio waveforms graphically.

The GUI consists of a hierarchical process network. The top level (the outermost
process) is the whole display; container processes allow this to be divided into different
areas, and other processes allow primitive graphics and text to be drawn. A clickable
button consists of a container process that combines a rectangle with a text area for the
label. Processes are provided for a number of standard GUI elements (buttons, text
and numeric entry boxes, sliders), but components such as the oscilloscope can build
their own additional GUI elements from the primitives as appropriate.

GUI components are drawn using vector graphics; this allows them to be rendered
upon displays of any size and resolution. Lists of vector graphics are propagated up
the hierachy from the primitive processes to the top level, with container processes
scaling the contained processes’ graphics to fit the area they are allocated. Conversely,
input events are pushed down the hierachy based on the component the user has se-
lected, until they reach a component that can do something with them. This approach
where nested components are connected by channels is also found in the rio window
system [167, 169], although rio works with bitmap images rather than vectors, and
gives applications direct access to the display.

As a live audio processing system, LOVE has soft real-time requirements: it must
minimise the latency between audio or control inputs and audio output. While occam-
π does not (yet) provide any facilities for specifying real-time constraints on schedul-
ing and communication, in practice the performance is already adequate; LOVE’s I/O-
SEQ architecture means that the processor and scheduler load in a LOVE application
is fairly predictable. The biggest source of latency is the interaction with operating
system facilities for audio input and output, and standard techniques from other au-
dio applications can be applied to minimise (and accurately measure) the processing
latency [66].

Synthesis in XC

As an experiment, a cut-down version of OAK was implemented on the XMOS XS1-G4
processor using the XC programming language.

This implementation suffers somewhat from the limitations of the XS1 processor ar-
chitecture and the XC language. In particular, since XC can only use hardware threads,
the entire program must fit into 32 concurrent processes, and the limited amount of
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Figure 29: The XC version of OAK

RAM on the XS1-G4 means that large buffers are not possible. The advantage of
the XS1 architecture is that everything—including serial input for MIDI, and one-bit
digital-to-analogue conversion—can be implemented in software, with safe direct ac-
cess to hardware moderated by the compiler; overheads are very low, and static guar-
antees about latency can be made [134, 89].

The XC version of OAK provides MIDI input, eight wavetable oscillators, a mixer,
automatic gain control and a 1-bit DAC output. The implementations of the basic
components are very similar to those in OAK (figure 30), although the channels in XC
carry single samples rather than batches of samples, and samples are integers rather
than floating-point values (both owing to language limitations in the early version of
XC used).

void amp(chanend cin , int mul , int div , chanend cout) {

while (1) {

int sample;

cin :> sample;

cout <: (sample * mul) / div;

}

}

Figure 30: The XC amplifier process
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The XC language does not expose the full flexibility of the XS1-G4’s primitive com-
munication operations. It would be possible for a future version of XC to provide a
limited form of mobile channel ends, allowing a more dynamic version of LOVE to
be implemented. Later processors in the XS1 series are sufficiently cheap and power-
efficient for use in synthesisers and guitar effects, so this would have practical applica-
tions.

Future Directions

The existing work on compiling occam into DSP code [226] suggests some interest-
ing applications for process-oriented audio processing. Using a graphical tool such as
LOVE, a musician could attach components together to create an instrument or effect,
test it on their PC, then compile it into DSP code to run on a standalone device. The
construction of an occam-π-powered “stomp box” effects unit for guitarists would be
an interesting student project.

This project lead to some ideas about transforming process networks for improved
efficiency and reduced latency. The “process fusion” rules proposed for CHP [48] could
be profitably applied to LOVE applications; fusion could be applied by the manager
process automatically.

It would be interesting to consider using the construction of something like this as
a tool for teaching process network design, since it shows immediate real-world appli-
cations for and analogues of the “Legoland” components. (It would perhaps require
students to know some music theory before learning occam, though!)

LOVE’s visualisation works well, but does not provide many of the facilities ex-
pected in modern GUIs, such as accessibility and internationalisation. It would be
possible in the future to build a set of process-oriented wrappers around an existing
GUI framework that would present the same convenient interface (as has already been
done for some Swing widgets in JCSP). Touch-based interfaces are of particular interest
for synthesis, since they allow control elements such as sliders and 2D panners to be
easily constructed, and allow several musicians to interact with a single application.

3.8 Occade

Occade is an occam-π module, now included in the KRoC standard library, for pro-
gramming simple arcade games [192].

As part of their course, students learning concurrent programming at the Univer-
sity of Kent work with a simulation of the dining philosophers problem, in which five
philosophers compete for access to forks; this problem is widely used as an example
of deadlock in concurrent software engineering [71]. Students are asked to add a vi-
sualisation to the simulation, and experiment with strategies for preventing deadlock.
Before Occade existed, students were encouraged to use simple “ASCII art” character
graphics for their visualisation; nonetheless, many students submitted highly elaborate
visualisations, adding animation, user interaction and intelligence (such as pathfind-
ing) to the existing simulation. Such extended simulations contain all the elements of
simple computer games.

Occade was designed to enable students, even those with a fairly limited com-
mand of occam-π, to easily develop programs with animated graphics. The features
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Figure 31: Parrot Attack, one of the Occade examples

it offers were modelled on home computer systems of the early 1980s, especially the
Atari 2600 [140]. Occade provides a fixed-size two-dimensional bitmap display with
the following features:

• a fixed playfield that is displayed behind all other graphics;

• any number of sprites, shaped graphical images with a transparent background
that may be moved anywhere on the screen;

• collision detection between overlapping sprites;

• the ability to load arbitrary graphical images or render text into a sprite;

• delivery of input events from the user in a standard format; and

• some helper functions generally useful for game programmers (such as generat-
ing random numbers).

Occade is implemented using the SDL graphics library [212], allowing high-perf-
ormance graphics on a wide variety of platforms (including all those supported by
KRoC). This is achieved through the use of the low-level “occSDL” bindings to the SDL
library [72]. Occade does not use the higher-level “sdlraster” module, since this would
prevent the use of SDL facilities such as direct access to graphics memory; however,
facilities are provided to convert graphics in the occam-π-standard RASTER format into
sprite images, allowing the existing occam-π graphics libraries to be used for rendering
sprite images (such as “life meters”) programmatically.
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Figure 32: Architecture of Occade

The Occade module comes with several examples, including a couple of complete
games: Parrot Attack, a Space Invaders-like game (figure 31), and a clone of Break-
out. These illustrate how process-oriented concurrency can be used to easily imple-
ment complex animations in a game. For example, when an enemy in Parrot Attack
is destroyed, it explodes in a shower of sparks; each spark is modelled as a process
controlling a sprite, falling under gravity until it collides with the edge of the screen.

3.8.1 Implementation

Occade’s internal architecture and programmer-visible API follow the . Client-Server
pattern, with a number of different server interfaces being presented to the program-
mer (figure 32). A “display” server maintains the list of sprites, rendering the graphics
display using SDL. Since the display server has complete information about all the ob-
jects being rendered, it can tell when only part of the display needs redrawing. The
display server is also responsible for computing intersections between sprites’ bound-
ing boxes to find collisions. (This can be contrasted with ? Flightsim, where collision
detection is performed as a distributed activity by all the players in the ring.) A sprite
may indicate that it does not participate in collision detection; this is useful for sprites
used for things like score displays that should not interact with other sprites.

Each sprite is represented by a process which presents a “sprite” server interface;
it packs the sprite’s information into a compact form that can be easily rendered and
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scanned for collisions. An “image cache” server manages the loading of sprite images
indexed by filename, caching each image when it is first loaded so that sprites can
change their appearance rapidly.

Input events are handled by “input filter” servers, which connect to the display
server and select only the subset of events that the programmer is interested in (for
example, only keyboard events). Any number of input filters may be attached to the
display. This allows the job of responding events to be easily divided between multiple
processes—for example, each player in a multi-user game may have their own input
handler.

To allow Occade to be used by student programmers who may not have been
taught how to use channel bundles, the details of starting and communicating with
server processes are hidden behind convenient PROCs. The programmer can therefore
think of the channel bundle ends as opaque “handles” to sprites, event filters, and so
on.

3.8.2 Sending Events

Occade has two types of server—sprites and input filters—that both present a server
interface, and need to be able to deliver events back to the process that would nor-
mally act as a client. In client-server terms, this means that they act as both a server
(responding to requests from the application) and a client (initiating event reports back
to the application). For these servers, the Occade interface uses channel bundles which
bind together both a conventional request-response pair for the server interface, and a
separate channel for delivering events.

To avoid blocking the display server—which would prevent the display from up-
dating—we must ensure that no interaction with the display server may cause it to
block. Requests to the display server are only made by sprite servers, input filter
servers and similar processes provided by the Occade library (which are programmed
such that they will always complete a client-server conversation with the display serv-
er without blocking). However, the delivery of input and collision events could cause
the display server to block if the application was unable to immediately accept them.

To prevent this, events are delivered asynchronously through infinite Buffer pro-
cesses; delivering a new event to the buffer will never block, and the application can
then process events at leisure. Delivering events over a buffered channel would be
equivalent—but occam-π does not provide buffered channels.

3.8.3 Future Directions

In the 2009 and 2010 instances of the Kent concurrency course, several students with
varying degrees of programming experience chose to use Occade for their dining phi-
losophers visualisations. Feedback has so far been positive, with all students who at-
tempted an Occade solution having completed at least a basic visualisation, and some
developing highly-creative solutions that mimicked games (figure 33). Even students
who only implemented the basic visualisation were able to produce a more visually-
attractive solution than they could have done using ASCII art, and several drew their
own custom artwork. Students will be encouraged to make more use of Occade in
future years.
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Figure 33: An Occade game written by an undergraduate student

At the moment, Occade only provides facilities for graphical output. Support for
sound is an obvious extension: most games include sound effects and background mu-
sic, both of which could be controlled using process-oriented interfaces. Providing a
convenient interface between Occade and the ? LOVE audio components would allow
the construction of games with generative, reactive music, where the mixing, instru-
mentation and even the arrangement of the music can change in real time in response
to player actions.

Of course, many modern games make use of three-dimensional graphics. OpenGL
provides a widely-supported interface for 3D graphics rendering [213], and the occGL
module provides OpenGL bindings for occam-π [72]. A process-oriented games fra-
mework could provide processes that represent 3D objects in the same way that Oc-
cade’s sprites represent 2D objects. However, this could be better achieved by provid-
ing bindings to an existing 3D game engine such as Cube [233] or OGRE [150], rather
than using OpenGL directly; such engines abstract away much of the complexity of
modelling a 3D world.

A simpler approach would be to make Occade use OpenGL rather than SDL for
rendering its display. This would be straightforward since the use of SDL is entirely
encapsulated within Occade, and would allow the use of OpenGL facilities—such as
3D screen transitions, or more attractive transparency and layering effects—within a
2D Occade game.

3.9 CoSMoS

The CoSMoS project—Complex Systems Modelling and Simulation—started in 2008,
building on the success of TUNA to “build capacity in generic modelling tools and
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Figure 34: The models defined by the CoSMoS Process

simulation techniques for complex systems, to support the modelling, analysis and
prediction of complex systems, and to help design and validate complex systems.” [64]
CoSMoS aims to develop a development process for the construction and use of com-
plex systems simulations across all fields of scientific endeavour. It is an interdis-
ciplinary, multi-institutional project with researchers and partners from a variety of
backgrounds.

For the purposes of CoSMoS, complex systems are those in which consist of many
interacting components, and often—but not always—exhibit emergent behaviours as
a result of the interactions between the components. The CoSMoS process makes use of
both models and simulations (figure 34). Models are abstractions used to describe and
reason about a complex system; simulations are executable models that can be used to
perform experiments.

At the moment, most scientific simulations are built from scratch in an ad-hoc fash-
ion. This causes a variety of problems: considerable duplication of effort between
different projects; inefficient implementations; the difficulty of reasoning about simu-
lation validity; and the prevalence of buggy implementations that do not correspond
to the models described in the associated publications—a problem that is almost never
caught by peer review, and which caused significant difficulties for several CoSMoS
case studies.

The CoSMoS process attempts to make use of the practices of agile software devel-
opment in the development of scientific software, recognising that most researchers do
not have the time or inclination to follow a rigid development process. It makes use of
design patterns to capture best practices at all stages of development: design, imple-
mentation, application, data analysis and validation. It emphasises the consideration
and documentation of assumptions and simplifications to aid validation, and defines
the roles that the partners in a complex systems project may engage with each other in.

The CoSMoS approach is driven by case studies, with the investigators experiment-
ing with a variety of different complex systems, documenting their efforts, and extract-
ing the common practices that worked well as design patterns. Sources of case studies
included: standard textbook examples such as the Boids model of bird flocking [179];
interesting papers such as Martyn Amos’s study of annular sorting in ant colonies [8];
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and a number of real applications from CoSMoS partners, including models of plant
populations [90], lymphocyte rolling in high endothelial venules [172], granuloma for-
mation [81], and social exclusion.

The simulations built by CoSMoS have been primarily agent-based, with agents
modelled as processes using process-oriented techniques. The primary aim during im-
plementation has been for scalability rather than straight-line performance, this being
a major challenge for complex systems simulations and a strength of the composi-
tional process-oriented approach. Many complex systems require large populations
to adequately investigate emergent behaviours (as some emergent behaviours behave
differently at different scales). Some overhead is therefore acceptable if it allows the
scientist to run bigger simulations by making use of multiple CPUs and distributed
systems. Simulations have been implemented for CoSMoS in a number of different
environments (occam-π, JCSP, Python, C++, NetLogo, and on FPGAs using VHDL);
an explicit aim of the project has been to support multiple implementation languages,
even within a single simulation.

3.9.1 Occoids

The first case study considered for CoSMoS was Craig Reynolds’ boids, a well-known
and widely-implemented simulation of bird flocking [179]. Boids move in a two- or
three-dimensional continuous space, and can see other boids in a fixed radius around
them. They follow three simple rules: move towards the centroid of the other boids
they can see, attempt to match the average velocity of the other boids they can see,
and avoid getting too close to other boids or obstacles. Bird-like flocking behaviour,
including pathfinding and obstacle avoidance, is achieved as an emergent property of
these simple rules.

The first implementation of boids for CoSMoS was Occoids, written in occam-
π [10]. Boids turned out to be a highly useful case study: it captures many of the
important features of other complex systems; a wide variety of interesting behaviours
can be obtained by adjusting and extending the rules; and it is very easy to see whether
a boids implementation is working correctly just by visual inspection, since even sub-
tle errors result in distinctly different patterns of flock behaviour. Occoids has thus
been modified and reimplemented several times during the course of CoSMoS. Fur-
thermore, the space model initially developed for Occoids was abstracted out to form
the basis of the simulation framework later used for many of the later CoSMoS case
studies.

Most of the complexity in Occoids comes from this model of space, designed to
allow efficient, scalable, parallel simulation. From the TUNA Life simulations (sec-
tion 3.5.2) came the idea of dividing space into a (possibly sparse) network of regions
represented by server processes; from the TUNA work on blood clotting (section 3.5.3)
came the idea of mobile agents that move from location to location.

In Occoids, space is divided up into regions, with each region represented by a
. Location process. Each location contains an arbitrary number of agent processes
(boids and obstacles), and keeps track of a local position for each, relative to the centre
of the region. Locations are connected much as cells are in a grid-based model; each
location process has a shared channel bundle which its neighbours have access to, and
provides a server interface that allows clients to enter a cell, move around, and retrieve
a list of agents along with their positions.
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Boid

Figure 35: A boid’s field of vision

The first thing that each boid must do on each timestep is to “look around” for
other agents in its neighbourhood. To do this, the boid needs to gather the contents of
all the cells that intersect with the region it can see. The Occoids agents are restricted
to seeing a circular region with a diameter of at most one location, which means that it
is sufficient to look at the location the agent is in and the eight surrounding locations.
Figure 35 shows a boid’s field of vision in the partitioned continuous space model.

Since all agents in each location need to look at the same set of nine locations, we
can save some effort by delegating this task to a shared viewer process. Each location
has a viewer process permanently attached to it, and on each time step the viewer
updates its view of the surrounding world. The viewer process then provides a server
interface to the agents in the corresponding cell which allows the agents to obtain their
local view.

In order to guarantee that the agents see a consistent view of the world, we must
make sure that all the viewers are updated after the agents have finished moving, but
before they look again at the start of the next time step. Each timestep is thus divided
into multiple . Phases, with a global barrier synchronisation between each phase:

• In phase 1, the viewers request the contents of the surrounding cells.

• In phase 2, the agents request their view from the viewers, compute their new
velocity, and send movement messages to their locations.

Once a boid has looked around, it decides in which direction to move by sending a
movement vector to its location. The location responds by updating the boid’s position.
If the boid remains within the same location, no further action is necessary. However,
if the boid has moved outside the bounds of the location, it must be moved into the
next location in the correct direction. To do this, the location responds with a message
instructing the boid to move into the next location. This approach makes it possible
to move across multiple locations in one movement step: upon entry, the first new
location can respond immediately with another “move” message, and the agent thus
reaches the correct target location by an iterative process. This process is illustrated
using a filmstrip in figure 36.
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Figure 36: Agent movement in the CoSMoS space model
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This was initially solved in a different way: originally, the current location was re-
sponsible for handing off the server end of the agent’s channel bundle to the new loca-
tion. However, doing this communication directly would create a cycle in the graph of
client-server relationships (since two neighbouring locations would be clients to each
other), and could result in deadlock—in particular, if two neighbouring locations tried
to send a location to each other at the same time. The . Messenger pattern was the
solution: when a location wished to relocate an agent, it forked off a short-lived pro-
cess that was responsible for transporting the channel bundle end to the new location.
However, delegating the work to the agent process works equally well, since in the
CoSMoS simulations every agent (even one that never moves, such as a tree in Oc-
coids) must have an associated process.

In order to avoid complicating every agent with code to handle movement—esp-
ecially in simulations with many types of agent—this functionality is abstracted out
into a separate agent manager process that hides the details of this from the agent itself.
The manager provides a simplified interface to the agent, supporting only “move”
and “look” requests. Adding this level of indirection simplified later work: it made it
possible to have arbitrary behaviour inside the space model that is not visible to the
agent itself.

3.9.2 Distributed Simulations

The CoSMoS model of space was extended to allow distributed simulation [201]: sim-
ulations running across several computers, connected using message-based network
links (rather than sharing memory, as multicore and multiprocessor systems do). Each
location upon which programs can run in a distributed system is called a host. It is
sometimes useful to assign more than one host to a physical machine—for example, to
balance load fairly between a cluster of machines of different processor speeds.

The first distributed version of the CoSMoS space model used pony to distribute
the boids across several hosts [10], with each host simulating a rectangular region of
space modelled by several location processes. pony provides networked channel bun-
dles for occam-π programs, with exactly the same semantics as local channel bundles;
the only visible difference is the significantly increased latency compared to local com-
munications. To obtain good performance, it is generally best to engineer a distributed
application in such a way as to minimise the number of cross-host communications,
and perform cross-host communications in parallel as far as possible.

To start with, the existing simulation was modified to set up the same network of
processes across a distributed application. The resulting simulation worked exactly as
before, but ran very slowly; furthermore, it got even slower as boids migrated between
hosts. There were two major sources of inefficiency:

• Neighbouring viewer processes must request the same view information from a
location on the other side of a network link. For local communications this is not
a problem, since only a reference is transferred; for network communications the
data must be copied.

• More seriously, agent processes continue to run on the host they were started on,
so once moved to a new host, every communication they do is across a network
link.
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Figure 37: Introducing ghost processes for locations

To solve the viewer problem, the ◦ Proxy pattern was applied in the form of ghost
processes, which cache the contents of a location on the other side of a network link
(figure 37). Viewer and agent processes that would ordinarily communicate with a
remote location are instead given a channel bundle to the corresponding local ghost
(which provides the same server interface as the remote location). Since ghost pro-
cesses must update their cached contents before viewer processes try to read it, an
additional phase was introduced to the simulation:

• In phase 1, the ghosts request the contents of their corresponding locations.

• In phase 2, the viewers request the contents of the surrounding cells.

• In phase 3, the agents request their view from the viewers and send movement
messages to their locations.

The agent problem was solved using mobile processes. In response to moving to a
location on a different host, an agent can be told to suspend itself: pack up its internal
state and terminate on the originating host. The state is moved to the destination host,
where a new agent process is started using the existing state. This is straightforward to
implement: when an agent attempts to move into a ghost (rather than a real location),
the ghost replies to the agent with a “suspend” message, and then signals the real
target location to spawn a new process (figure 38).

A sample process network at a host boundary in the final model is shown in fig-
ure 39. The cycle time of the resulting simulation is approximately equal to that of
the single-host simulation plus the network latency. The distributed simulation runs
successfully on clusters of networked PCs (such as the Display Wall at the University
of Tromsø, for which it was further extended to support user interaction; figure 40).
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Figure 39: Process network at a host boundary in Occoids

Figure 40: Occoids running on the Display Wall
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The cycle time remains approximately constant as the simulation is scaled from two
to sixteen hosts. This is as expected, since each host only needs to communicate with
its immediate neighbours. The constant factor in the simulation—caused by pony’s
implementation of CSP communication semantics requiring additional round-trips in
network communications—was reduced by using the Trap asynchronous messaging li-
brary (section 3.3.5) rather than pony; network channels are only used by the ghost pro-
cesses, so it was straightforward to adapt the ghost-to-real-location protocol to work
with asynchronous messaging, by adding additional acknowledgements where neces-
sary.

3.9.3 Generalised Space Model

The aim of CoSMoS is to develop reusable techniques, so the obvious next step was to
use the approaches developed in Occoids to implement simulations of different com-
plex systems.

The first reuse was for ant-based annular sorting [8], in which ants sort eggs into
rings by size by picking up poorly-placed eggs and dropping them when they find
a better location. Ants and eggs are modelled as agent processes. To allow ants to
carry eggs, the space model was extended so that agents could pick up other agents
(removing them from their locations), and put them down elsewhere. This was the
only change necessary to the space model for this use, since the notion of space is
exactly the same as in Occoids—two-dimensional continuous space.

More complex requirements were introduced for a simulation of lymphocyte mi-
gration [172]. Lymphocytes are white blood cells that pass from the blood system into
the lymphatic system inside high endothelial venules (HEVs), specially-adapted areas
of the network of blood vessels in a lymph node. Lymphocytes are carried through
the HEV as part of the normal flow of blood, and can bind to the cell wall; they ini-
tially bind weakly, “roll” along the wall until they are sufficiently activated, and pass
through the wall into the lymph node. To model this to a reasonable degree of accuracy
(especially regarding the interactions between the lymphocytes and the HEV wall) re-
quires 3D space, which meant extending the space model to support three dimensions,
with location processes representing thin “slices” of the HEV.

The model was then extended further to treat the incoming bloodstream and out-
going lymphatic drain as locations; since the experiments that were to be performed
involved counting the numbers of lymphocytes in each “state”, this simplified the col-
lection of results. The position information carried by each agent thus changed from
a 3D coordinate to a coordinate plus a state number, with the coordinate only being
used when the agent was in the HEV. The lymphocyte simulation was prototyped by
copying and modifying the 2D code, with significant changes made to support the
more complex position information—clearly not a tenable approach from a software
engineering perspective, especially as nearly all complex systems simulations involve
agents moving within some kind of coordinate space. The space model was therefore
extracted as a reusable component that can be parameterised to support different types
of simulation.

Ideas of space in complex systems vary in many ways: space may have varying
numbers of dimensions, including very large numbers of dimensions for optimisation
problems; it may be continuous or discretised; it may be Cartesian, partially-Cartesian
or non-Cartesian; it may be finite, wrap around or infinite; and it may require locations
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themselves to have attributes, such as weather or information deposited via stigmergy.
A generalised space model must be able to cover as many of these possibilities as pos-
sible.

In the CoSMoS space model, space has a three-level structure. Each point in space
has a unique position. Space is divided into uniquely-numbered locations, which are
groups of adjacent positions. Sets of locations are then assigned to hosts in a distributed
simulation. For each simulation, the space model is provided with:

• a data type representing a position;

• a data type representing a position update (a change in position);

• a function to apply a position update to a position, giving a new position;

• a two-way mapping between positions and locations;

• a two-way mapping between locations and hosts.

This model has proved to work well for a number of CoSMoS simulations. For
example: in Occoids, the position and position update data types are 2D vectors, and
the update application function is addition with wraparound at the edge of the space.
For the lymphocyte simulation, the position data type is a 3D vector plus a state, and
the position update function can recognise when lymphocytes pass out of the HEV into
the lymph node.

3.9.4 Ccoids

To demonstrate how process-oriented techniques could be applied to programs con-
structed in a more conventional style, Occoids was reimplemented in C++ as “Ccoids”.

Ccoids uses the CCSP scheduler for concurrency, but replaces the server processes
in Occoids with objects, and provides a higher-level C++ interface that hides the details
of CCSP. Safe access to objects is provided by a shared reference class parameterised
over the interface type that the reference refers to. This class offers the same semantics
for access control as the explicitly-shared channel bundles used to mediate access to
servers in Occoids, and is implemented using the same low-level CCSP facilities. C++
wrappers are provided for CCSP’s barriers and forking facilities, which are used in
Ccoids in the same way as Occoids. The code makes no use of channels at all—making
a request to a server is done by calling a method through the appropriate interface
reference.

The resulting simulation is very close in structure to the original Occoids, with
slightly better performance owing to the reduced number of synchronisations neces-
sary, and the better optimisation available in the C++ compiler. It offers the same safety
guarantees as a result of the use of the client-server model, while using very few fa-
cilities that the average C++ programmer will not be familiar with. This suggests that
such a high-level interface to CCSP’s facilities may be of use for the construction of
concurrency object-oriented programs.

This approach has two disadvantages: no static checking is provided, and only sim-
ple request-response conversations (i.e. method calls) between clients and servers can
be accommodated, meaning that patterns such as . Loan cannot be protocol-checked.
In practice such a system is not currently much worse off than it is under occam-π,
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Figure 41: A customised Arduino board (photo by Carl Ritson)

since the existing occam-π compilers do not support checking the client-server pattern
or two-way protocols either. (See section 6.3.2 for a discussion of how this could be
supported in the future.) These disadvantages must be balanced against all the advan-
tages of using a mainstream programming language for CoSMoS simulations: a much
richer set of data types, easier access to external libraries, and more mature, higher-
quality compilers and debugging tools.

The Occoids architecture has additionally been reimplemented by CoSMoS part-
ners using JCSP, using CHP, using VHDL on an FPGA, and in a variety of environ-
ments as a benchmark for concurrent runtime systems [184].

3.10 Plumbing

Plumbing is a framework for programming Arduino boards using occam-π [118].
The Arduino is a family of development boards for the Atmel AVR microcon-

troller [13]. Arduino boards provide a USB interface, a power supply, and an AVR
processor with all its I/O lines made available through connectors. The Arduino de-
sign is open source hardware: it can be freely copied, adapted and built by anybody,
and Arduino boards are widely available for around £15 (figure 41). Many variations
on the basic Arduino design exist for specific applications, such as robotics or wearable
computing.

What really makes an Arduino an Arduino is the bootloader on the AVR chip,
which provides a standard way of uploading “sketches” of code. The standard en-
vironment provided for Arduino programming is based on Wiring [263], using C++
inside a simple IDE, with a library of standard functions for hardware interfacing. The
Arduino and its programming environment have been hugely successful, especially
for education, for hobby electronics and for installation art, with a large community of
Arduino users and developers and a wealth of documentation available.

However, the Wiring environment provides no support for concurrency—which
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Figure 42: A process-oriented RepRap controller

makes writing many kinds of applications difficult. For example, the control system for
the RepRap rapid prototyping system, which prints three-dimensional objects using
hot plastic, uses an extended Arduino programmed using Wiring [178]. The RepRap
needs to control three servos to position the print head relative to the workpiece, an-
other motor to extrude plastic from the print head, and a heater to maintain the plastic
at the correct temperature for printing, while reading from endstop position sensors
and a temperature sensor, and responding to commands sent over the USB interface
from a host computer. The existing software is essentially written as one very large
loop that polls each hardware device in turn. Not only does this approach result in
software that is hard to read, it produces a control system that is highly unreliable. If
one task takes longer to execute than expected—for example, if an especially hard-to-
parse command is sent from the host machine, or a servo fails to reach its intended
position—then other tasks can be blocked—such as the heater staying on longer than
intended. These kinds of problems are endemic in control systems built using Wiring.

Providing some basic concurrency facilities would make the Arduino program-
mer’s life much easier. In the RepRap, the tasks of responding to sensors and to com-
mands from the host machine should be delegated to concurrent processes (figure 42).
The print head can be maintained at temperature by a dedicated process; similarly,
each motor can be positioned by a process that controls the motor and reads the corre-
sponding endstop sensors. Indeed, this is one of the kinds of problem that occam and
the Transputer were designed to solve: embedded systems that need multiple concur-
rent flows of control combined with low-level hardware access.

The AVR microcontrollers, however, are a very different environment from the
general-purpose PCs upon which the majority of occam-π work has been done over
the last ten years. A typical Arduino microcontroller, the ATmega328P, has an 8-bit
CPU with 32 KiB of flash memory and 2KiB of static RAM [18]. The KRoC environ-
ment supports devices like these through the Transterpreter, a small, portable virtual
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machine that interprets extended Transputer bytecode [116, 115].
Running occam-π on the Arduino meant porting the Transterpreter to the AVR ar-

chitecture. The AVR GCC toolchain makes it appear as a 16-bit CPU, a configuration
supported by both the occam-π compiler and the Transterpreter. However, the AVR
CPU is a Harvard-architecture device, meaning that it has separate address spaces
for program instructions and data—which means that data may need to be copied
from flash into RAM, further limiting the space available for the occam-π program’s
workspace. The Transterpreter was extended to map program memory into the top
half of the Transputer memory space, meaning that occam-π programs can be stored
directly in flash. Another AVR-specific modification allows processes to wait in an ef-
ficient way for an interrupt to fire. The resulting device is roughly equivalent to an
INMOS T212 Transputer in terms of computational ability and memory space avail-
able, although rather slower owing to the interpretive runtime.

Making occam-π useful on the Arduino means providing modules that support the
construction of Arduino applications. An avr module provides occam-π equivalents of
the AVR C headers, allowing programs to support multiple AVR variants easily. Upon
this is built the wiring module, which mirrors the Wiring API, allowing straightfor-
ward ports of existing Arduino applications. However, neither of these provide any
features to support concurrent programming.

The plumbing module provides a library of processes and protocols that can be used
to construct concurrent Arduino applications. Many useful applications can be built
simply by connecting together existing processes (figure 43). The processes and pro-
tocols were inspired by the electronic components that an Arduino is likely to be at-
tached to; channels carry logic levels, and processes are provided that connect to input
and output pins (sending messages only when the value carried changes), debounce
switches, detect edges on a waveform, oscillate at a defined rate, act as a flip-flop or an
inverter, and so on.

When used on the Arduino, the Transterpreter is simply a program that can be
uploaded to the AVR using the Arduino bootloader. This means that Arduino users can
easily experiment with occam-π without needing any special hardware to reprogram
their chip, and they can move back and forth between occam-π and C++ programs
easily. Since the Transterpreter binary is quite large (18 KiB), the occam-π tools allow
the user to just upload a new version of their occam-π program, leaving the existing
Transterpreter intact in memory, which significantly speeds up uploading.

The Transterpreter does not, however, make use of the existing Arduino C++ li-
brary; since hardware access from occam-π is very straightforward, using the library
offered no advantage in terms of code simplicity. This also has the advantage that the
Transterpreter and Wiring are not tied to the Arduino environment—they can be used
to write code for AVR processors embedded in other devices too.



CHAPTER 3. CASE STUDIES 95

Having the Transterpreter available on a low-cost microcontroller board has dis-
tinct advantages for teaching concurrency and computer architecture. The Arduino
is sufficiently cheap—and sufficiently well-documented—that it makes sense for an
institution to buy a large number of boards for use in class exercises, or even to get
students to build their own boards. Plumbing can then be used in compelling, prac-
tical exercises that combine concurrent programming with physical computing—and
may even feature collaboration between computer science, electronics and art courses.
Physical computing with occam-π has already been used successfully in teaching at
Allegheny College and the University of Kent [117]; an introductory book is available
as a teaching text [118].



Chapter 4

Process-Oriented Patterns

This chapter describes a pattern language for process-oriented software design. The
patterns have been drawn from real-world examples of process-oriented software,
many of which are described in more detail in chapter 3.

The format in which patterns are described here is based on that of “A Pattern
Language” (section 2.4). Each pattern has: a section classification; a name; a brief
statement of the problem; a discussion of the solution, the issues surrounding it, and
the other patterns to which it is related; a brief statement of the solution (often in the
form of a process diagram); and a set of examples that show how the pattern is used.

4.1 Process Patterns

The patterns in this section describe classes of processes that share common features.
These include the interface the process presents—the synchronisation objects it exposes,
and the ways in which it uses them to interact with other processes—and some aspects
of its internal behaviour. Many of these processes will be discussed in the context of
channels with simple protocols (for example, channels that just carry single integers);
these will be called streams.

In many environments, it is possible to provide a basic framework for each of these
patterns into which the programmer can plug the appropriate custom behaviour for
their application. This is especially straightforward in process-oriented frameworks
for languages that support type-parametric and higher-order functions. For example,
CHP provides a map function that implements . Filter; as its first argument, it takes
the function that should be applied to each data value passing through the filter [50].
There are obvious parallels between such higher-order processes and the higher-order
functions used for list and data structure processing in functional languages; expres-
sions that operate upon lists can easily be turned into concurrent programs operating
upon streams using . Pipeline. Similarly, an object-oriented environment may provide
a Buffer class that provides single-place buffering by default, but can be subclassed to
support more complex buffering behaviours.

The occam-π standard library, on the other hand, cannot provide higher-order pro-
cesses owing to its lack of support for templating, meaning that processes that operate
upon an arbitrary type cannot easily be written. Some form of templating or polymor-
phism greatly eases code reuse in process libraries.

96
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Many of these patterns describe processes that follow predictable patterns of co-
mmunication—for example, always responding to an input message with an output
message. These interfaces may be formally specified using a process calculus such as
CSP and checked automatically by a design tool or compiler, as is already done for sev-
eral process interfaces within RMoX [25]. Future process-oriented frameworks could
include a library of communication specifications corresponding to common process
patterns against which process interfaces could be automatically checked.

4.1.1 Producer and Consumer

Producer

Consumer

PROBLEM: Values need to be obtained from or delivered
to something that is not itself a process.

Producers and consumers are the simplest classes of
processes that have any interaction with other processes:
a producer process has a single output channel, and a con-
sumer process has a single input channel. A producer con-
nected to a consumer forms the simplest possible process-
oriented system.

Producer and consumer processes are common on the
edges of a process network as interfaces to non-process-
oriented facilities such as hardware devices and operating
system streams, and as wrappers around pieces of code that only generate or consume
data.

Producer processes are similar to Icon’s generators [205]: a producer will usually
be blocked, except when a value is required from it.

Examples of Use

? Plumbing provides producer processes that read values from I/O pins, and con-
sumer processes that likewise write values.

? LOVE provides a producer process that reads MIDI events from the system se-
quencer, and a consumer process that writes an audio signal to the soundcard.

In occam-π, the standard way of writing a print procedure—that converts some data
structure to a human-readable textual form—is as a generator process that writes the
string to a CHAN BYTE and then exits. The programmer can thus print to the standard
output or standard error streams, or to a channel of their choice. ? KRoC’s course and
useful modules provide many print procedures that follow this form.

4.1.2 Black Hole

PROBLEM: An unwanted channel must be connected to something.
The most common sort of . Consumer process is the black hole

(or sink): a process with a single input channel, which immediately
discards any input value it receives [252, 120]. Since writing to a
channel from which no other process is reading will block, a black
hole process must be used when a process has an output channel that is not needed in
the current application.
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A “black hole producer” process—that simply never produced any output—would
be possible, but in practice it is rarely necessary, since leaving an input channel uncon-
nected has the same effect. Generator processes that emit a fixed sequence of outputs—
either a single message, or the same message repeatedly—are useful, though [252].
CHP calls the latter a white hole process [50].

Examples of Use

The raster.display process in ? KRoC’s sdlraster module, which provides a bitmap
graphics window, has an events channel that delivers keyboard and mouse events.
Applications that do not need these events must discard them by connecting the chan-
nel to a black hole process. This is common enough that the module also provides
raster.display.simple, which runs raster.display in parallel with a black hole pro-
cess.

When print procedures are used for debugging output, a black hole process can be
used to discard the debugging messages when they are not needed; such an approach
is used in ? occam-X11.

4.1.3 Filter

Filter

PROBLEM: Each value in a stream needs to be pro-
cessed in some way.

Filter processes take a stream of input values,
and deliver a stream of output values based on their
input. Filter processes fall into two main categories:
those that apply a computation to each input value
to produce a new output value (like the “map” func-
tion in functional programming), and those that examine each input value to decide
whether to output it unchanged or to discard it (like the “filter” function).

Filter processes may keep some internal state—for example, integrator and differ-
entiator processes are useful in control engineering [119], and compression filters (such
as video codecs) require an internal model of the data stream.

Examples of Use

? LOVE, which deals with streams of either MIDI events or audio data, provides a
number of stateless filter processes that correspond to standard audio operations, such
as amplification and transposition. It also provides a stateful filter that applies an echo
effect to an audio stream. Such filters are common in audio processing environments
such as Pure Data [175].

In graphical applications that use the . Ring pattern to connect rendering processes
to a display (such as ? Occoids), it is common for the first process in the ring after the
display to be a filter that clears the display images as they pass.

The ? RMoX network stack uses both types of filter process to handle checksum
fields in IP packets. A filter-style filter process rejects incoming packets with incorrect
checksum fields; a map-style filter process computes the checksum field on outgoing
packets.
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PROC blocking.buffer <ITEM > (CHAN ITEM in?, out!)

WHILE TRUE

ITEM value:

SEQ

in ? value

out ! value

:

Figure 44: Blocking buffer process

? Plumbing provides a stateful filter process that performs edge detection: it only
sends a signal from its output when it receives an input value that differs from the last
one it received.

4.1.4 Buffer

Buffer

PROBLEM: Processes sending data and receiving
data need to be decoupled in time.

Buffer processes maintain an internal store of
values. In a simple FIFO buffer, the buffer process
has an internal list of values. Input values are added
to the tail of the list, and output values made avail-
able immediately from the head of the list. Values
are therefore output from a FIFO buffer in exactly the order that they were received,
and any input value is output exactly once; no additional output values are fabricated
by the buffer.

In practice, most buffers place a limit on the size of the internal list; such a buffer
is called an N-place buffer (rather than the unlimited infinite buffer). Once the buffer
is full—for example, N data items have been fed into the buffer with none being
removed—the buffer has several choices for what to do when another value is inserted:

• refuse to accept the new value, by blocking the sending process until space is
available (a blocking buffer);

• discard the new value (a discarding buffer);

• discard the oldest value in the list, making space for the new value to be accepted
(an overflowing buffer);

• discard the newest value in the list, making space for the new value to be ac-
cepted (an overwriting buffer).

(More complex behaviours are possible, but rare—for example, a smart buffer may
examine the values in its list to find one to discard, or may summarise some of the
values it holds to reduce the space they take up.)

A one-place blocking buffer is very easy to implement in occam (figure 44). As a
result, many . Filter-like processes actually act as one-place buffers; a process-oriented
program can accrue a considerable degree of buffering by accident.
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PROC overwriting.buffer <ITEM > (CHAN ITEM in?, out!)

INITIAL BOOL full IS FALSE:

ITEM value:

WHILE TRUE

ALT

in ? value

full := TRUE

full & out ! value

full := FALSE

:

Figure 45: Overwriting buffer process
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Figure 46: Two-process overwriting buffer

PROC overwriting.buffer <ITEM > (CHAN ITEM in?, out!)

CHAN SIGNAL req:

CHAN ITEM resp:

PAR

INITIAL BOOL full IS FALSE:

ITEM value:

WHILE TRUE

ALT

in ? value

full := TRUE

full & req ? SIGNAL

SEQ

resp ! value

full := FALSE

WHILE TRUE

ITEM value:

SEQ

req ! SIGNAL

resp ? value

out ! value

:

Figure 47: Overwriting buffer without choice over outputs
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PROC holding.buffer <ITEM > (CHAN ITEM in?, out!)

ITEM value:

SEQ

in ? value

WHILE TRUE

ITEM new.value:

SEQ

in ? new.value

out ! value

value := new.value

:

Figure 48: One-holding buffer process

A one-place overwriting buffer requires the use of choice (figure 45). Since occam-
π does not in practice permit choice over an output guard, this can instead be imple-
mented using a pair of processes, one of which requests values from the other (fig-
ures 46 and 47).

So far, we have only seen buffers that block the process reading from them when
the internal buffer is empty. Instead, a buffer process may choose to repeat a previous
value when it is able to output but its internal buffer is empty. This would be an appro-
priate choice for a buffer holding data read from an unreliable sensor, for example; it
is often better to repeat the previous sample than to create a gap in the output stream.

In addition, these buffers make an output value available immediately when an
input value is received. An alternative is to require a buffer process to be holding a
certain number of items in its internal buffer before the oldest is made available to
output. This type of holding buffer is useful when the passage of values through the
buffer is being used for synchronisation, and a deliberate delay must be introduced in
the stream of values. A one-holding buffer needs to ensure that it has read a new value
before the old one is output (figure 48).

Another common option is a buffer process that limits the rate at which values are
made available for output, either using real time, or a . Clock—a rate-limiting buffer.

Some kinds of buffers may reorder the values they contain—for example, if they
hold messages with priorities attached, they may use a priority queue as the internal
store in order to have high-priority messages be made available at the output more
quickly than low-priority messages.

Examples of Use

Buffer processes are widely used to simulate buffered channels (section 2.2.2) in envi-
ronments that only provide synchronous channels.

Many graphical programs, including ? Occade and ? Occoids, use rate-limiting
buffer processes to control the rate at which the display is updated. Graphical program
such as ? LOVE that provide GUI widgets to adjust parameters often decouple each
widget from the process it is controlling using an overwriting buffer, so that only the
latest value provided by the user is delivered.

Sort pumps make use of specialised buffer processes; see . Pipeline.
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PROC glue <ITEM > (CHAN ITEM in?, out!)

WHILE TRUE

ITEM value:

in ?? value

out ! value

:

Figure 49: Glue process

4.1.5 Glue

PROBLEM: Two channels must be spliced together.
A glue process has the interface of a buffer, but actually provides no buffering at

all—it simply connects two channels together, providing the usual synchronisation se-
mantics transparently. The usual approach to implementing a glue process is to use
extended input to ensure that the process on the input side is blocked until the process
on the output side has taken the value, by doing the output as the extended action
(figure 49).

Note that this only works in one direction, though; in an environment where choice
over output guards is permitted, the process is no longer transparent, since the output
can complete before the input side is unblocked; this can be solved using conjunctive
choice in environments that provide it [52]. The same technique and problem applies
to making invisible . Delta and . Terminal processes.

Examples of Use

The static implementations of ? LOVE provide glue processes that can be used to re-
place removed components.

A . Terminal process is a glue process that joins a mobile channel end to a static
channel, with facilities to switch channel ends at runtime.

4.1.6 Valve

Valve

control

PROBLEM: A stream of values needs to be manip-
ulated under the control of another process.

Like a . Buffer or . Filter, a valve process has
an input channel and an output channel, between
which it normally passes values—but it also has one
or more control inputs that allow other processes to
control its behaviour during operation. A valve pro-
cess may simply be a buffer or filter with some pa-
rameter that may be adjusted at runtime—for exam-
ple, a rate-limiting buffer where the rate is adjustable, or a buffer with an input that
allows the buffer to be emptied—but there are other possibilities.

The most common type of valve is the pause process, which usually passes values
unchanged from its input to its output, until it receives a message on its control input;
it then waits to receive a second control message before it resumes its usual behaviour.
This is usually implemented using the . Acknowledgement double-communication
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PROC pause <ITEM > (CHAN ITEM in?, out!, CHAN SIGNAL control ?)

WHILE TRUE

PRI ALT

control ? SIGNAL

control ? SIGNAL

ITEM value:

in ? value

out ! value

:

Figure 50: Pause process

PROC reset <ITEM > (CHAN ITEM in?, out!, replace ?)

WHILE TRUE

ITEM value , dummy:

PRI ALT

replace ? value

SEQ

in ? dummy

out ! value

in ? value

out ! value

:

Figure 51: Reset process

pattern in occam (figure 50). This kind of pause process blocks its input channel while
paused; an alternative would be to discard messages from its input channel while
paused.

The reset process is another type of valve. When a reset process receives a value on
its control input, it uses it to replace the next value read from its regular input (figure 51).

Reset processes are especially useful as part of a . Ring, where the ring is being
used to share a value among a group of processes that usually just read the value and
pass it on. A reset process in the ring can be used to replace the value with a new one.

Examples of Use

The digital circuit simulator built in occam at Kent in the late 1980s modelled compo-
nents as processes and wires as channels, using the . I/O-PAR pattern [252]. It pro-
vided “probe-point” valve processes that allowed the user to inspect the logic levels
on particular wires by attaching a virtual logic probe to them.

? LOVE provides a number of controllable filters that follow this pattern: for exam-
ple, it has a volume control process that multiplies each of a stream of audio samples
by a scaling factor, with the control input allowing the scaling factor to be adjusted.

? Flightsim uses a ring to distribute the locations of objects in the world among
the players; for each object, there is a corresponding data value circulating in the ring.
Each player’s connection to the ring includes a . Delta to deliver a copy of the object
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information to the player’s graphics system, and a smart reset process to replace the
data value corresponding to the player’s aircraft when it next passes.

Subsumption architectures for control of autonomic systems—where the system’s
behaviour is described using a network of possible behaviours connected by elements
that allow behaviours to promote and override actions—can be implemented in a natu-
ral way using process-oriented techniques [216]. Suppressor and inhibitor elements in
a subsumptive control system are represented as valve processes that allow messages
from one behaviour to override those from another.

4.1.7 Grouper and Ungrouper

Grouper

Ungrouper

ITEM []ITEM

[]ITEM ITEM

PROBLEM: A stream of aggregate values needs
to be split into individual values; or vice
versa.

Groupers and ungroupers are specialised
kinds of . Filter.

Grouper processes collect several input
items to produce a single larger output item;
ungrouper processes break a single input item
into several smaller output items. For each in-
put item, a grouper will therefore produce a sequence of outputs; an ungrouper will
accept a number of inputs before producing an output.

Groupers and ungroupers can be used to enable greater parallelism when process-
ing streams of arrays: a . Farm or . Fan-Out can be surrounded by an ungrouper-
grouper pair to allow each element in an array to be processed individually.

Examples of Use

Process-oriented programs that need to work with text files—for example, to read con-
figuration information or input data—generally use grouper and ungrouper processes
to produce streams of tokens or lines at an appropriate level. Typically, a . Producer
process makes the bytes of a file available over a channel; grouper processes can then
be used to:

• convert encoded bytes into Unicode characters;

• tokenise a character stream into tokens;

• collect characters into words or lines; and

• join continuation lines to produce flattened lines.

Upon output, an ungrouper process can be used to break lines into Unicode charac-
ters, and another to encode characters into an external multibyte representation. Sev-
eral of these processes are provided in ? KRoC modules; others are generally con-
structed to suit the application’s requirements.

Aspects of network protocols can often be specified in terms of grouping and un-
grouping. The ? RMoX network stack implements the SLIP protocol as a grouper-
ungrouper pair [198]: incoming bytes from the serial device (terminated by a marker
value defined by the SLIP protocol) are grouped into packets, and outgoing packets are



CHAPTER 4. PROCESS-ORIENTED PATTERNS 105

PROC merge <ITEM > ([] CHAN ITEM ins?, CHAN ITEM out!)

VAL INT n IS SIZE ins:

WHILE TRUE

SEQ i = 0 FOR n -- fair choice idiom

PRI ALT j = 0 FOR n

ITEM value:

ins[(i + j) \ n] ? value

out ! value

:

Figure 52: Merge process using fair choice

PROC merge <ITEM > ([] CHAN ITEM ins?, CHAN ITEM out!)

SHARED! CHAN ITEM shared:

PAR

PAR i = 0 FOR SIZE ins

WHILE TRUE

ITEM value;

SEQ

ins[i] ? value

CLAIM shared!

shared ! value

blocking.buffer (shared?, out!)

:

Figure 53: Merge process using a shared channel

ungrouped into bytes. Similarly, RMoX’s implementation of the telnet protocol uses a
grouper-ungrouper pair to convert between the streams of bytes used by RMoX’s ter-
minal interface, and the streams of arrays of bytes expected by its TCP socket interface.

4.1.8 Merge

PROBLEM: Values from several streams must be interleaved
into a single stream.

A merge process takes values from several input channels
and writes them all to a single output channel. Each input will
result in a single output.

The most common form of merge process simply makes a
fair choice across its input channels and writes any value it re-
ceives to its output (figure 52). The effect of this is to simulate a
channel with a shared input end. Indeed, a merge process can be implemented using
only buffer processes and a shared channel (figure 53).

Simple merge processes like the example above are relatively rare in environments
such as occam-π that support shared channel ends, because using shared channels
makes it easier to wire up the process network. Even where an existing process inter-
face provides messages over unshared channel ends, . Glue processes can be used to
connect them to a shared channel end. This is therefore a partial antipattern: before



CHAPTER 4. PROCESS-ORIENTED PATTERNS 106

writing a merge process, you should consider whether a shared channel can be used
instead.

However, it is sometimes useful to know from which input a particular value came;
in these cases, a merge process that tags values with the identifier of the channel from
which they were received can be used.

Examples of Use

Many occam programs used merge processes where shared channel ends are now used
in occam-π: for example, the INMOS flight simulator can be controlled using either
keyboard or joystick commands, and this is implemented by having keyboard and
joystick events fed from two different processes into a merge process, to produce a
single stream of input events.

The ? RMoX network stack uses a merge process to handle packets coming from
several network interfaces in a uniform way; packets are tagged with the name of the
source interface. (Since network interfaces may be created and destroyed at runtime,
this merge process is also a . Terminal, allowing new interfaces to be connected.)

4.1.9 Collector

PROBLEM: Sets of values that arrive upon several streams need to be collected to-
gether.

Like a . Merge process, a collector process has several input channels and one
output channel—but rather than passing individual values through to the output, a
collector process collects one value from each of the input channels, and computes a
single value to output from the complete list of values.

A collector process may simply output the list of input values as the output value;
such a collector would properly be called a multiplexer, by analogy with the equivalent
component used in telecommunications systems [252]. (However, this term is also
sometimes used for . Merge processes.) A more common use is to summarise the list
in some way—for example, to compute the sum of the input values.

Examples of Use

Collector processes are often used to implement . Fan-Out; for example, in ? Occoids.
In audio processing frameworks such as ? LOVE, mixer processes are collectors:

they read an audio sample from each of their input channels, then perform a weighted
sum operation to compute an output sample. In addition, LOVE’s mixer component
handles unconnected input channels by generating a synthetic stream of silent sam-
ples, allowing new components to be connected to unused channels while the network
is in operation.
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4.1.10 Delta

PROBLEM: A stream of values must be distributed to several
processes, with each value going to all processes.

A delta process has one input channel and several output
channels. Each value input will result in one value being written
to each of the output channels.

The most common form of delta process simply sends its
input value to all of its output channels [252, 120]. Where the
data type in question is a single-owner type, this will require
the data value to be copied. As a result, delta processes may be a source of inefficiency
in systems that make use of the communication semantics of single-owner types. (See
. Fan-Out for how some uses of delta processes may be refactored into pipelines to
avoid this problem; a . Ring could also be used to distribute data among processes.)

Just as a . Merge process emulates a shared channel using unshared channels, a
delta process emulates a broadcast channel using regular channels. Delta processes
are therefore widely used to distribute information in environments where broadcast
channels are not available.

Delta processes can be introduced into a process network to aid debugging, by
providing a second copy of the information being sent along a particular channel. In
this case, the . Glue process technique is useful to avoid introducing an extra place of
buffering inside the delta process.

Two strategies are possible for performing outputs in delta processes. Sequential
delta processes write to their output channels one at a time, in order; parallel delta pro-
cesses perform all of their outputs in parallel. While a sequential delta is simpler to
implement, it can be blocked if one of the processes that it is sending to is not willing
to receive; parallel deltas are usually preferred since they will deliver messages to re-
ceiving processes as soon as they become available. Parallel deltas are often slightly
less efficient though; a parallel delta must either perform a choice across a group of
output guards, or fork and wait for a number of child processes.

A demultiplexer is a delta process that takes an array of values as input, and sends
a different element from the array to each of its output channels. A delta process with
no output channels is equivalent to a . Black Hole.

Examples of Use

A delta process is often used to implement . Fan-Out; for example, in ? Occoids. The
distributed version of Occoids also makes use of delta processes to distribute parame-
ter change messages to all the hosts in the simulation.

In ? LOVE, delta processes are often used as analogues for distribution amplifiers
that send the same audio or MIDI event stream to multiple destinations: for example,
to process the same oscillator through several different delays to produce a reverbera-
tion effect, or to turn a monophonic audio stream into a stereophonic one.
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4.1.11 Distributor

PROBLEM: A stream of values must be distributed among several processes, with
each value going to one process.

A distributor process has a single input and several outputs, like a . Delta, but
it follows a different pattern of communication: each input value is delivered to only
one of the output channels. Distributor processes are used to route messages to an
appropriate receiver.

Load-balancing is a common use of distributor processes. A distributor may simply
deliver values to each output in turn (like a car engine’s distributor), or select an output
at random. More usefully, a distributor could perform a choice across all the outputs
to select one that is ready to receive. This technique is commonly used to distribute
work to worker processes in a . Farm. Just as a . Merge process can be replaced with a
channel with a shared input end, this kind of distributor can be replaced with a channel
with a shared output end.

Alternatively, the output may be chosen based on a function applied to the value;
such a distributor is called a router. This is useful when messages must be distributed
to the appropriate one of a pool of specialised worker processes.

Examples of Use

The ? RMoX network stack uses several levels of distributor processes to route incom-
ing network packets to the correct destination: first, packets are distributed based on
their destination address, then their protocol, and finally their port number (so a packet
to a different machine may be routed out another network interface, whereas a packet
to a local TCP port would be routed to the process that manages that port).

Elsewhere in RMoX, router processes are used to pass mobile channel ends to the
appropriate subsystem when devices are opened; see . Hand-Off.

A particular kind of load-balancing process is provided in ? LOVE for use when
building synthesisers: one that distributes MIDI notes to one of the several oscillators
in a polyphonic synthesiser (a “voice allocation” process) [176]. The problem comes
when more notes are being played than there are oscillators available—the voice al-
locator must make a decision that will make the least difference to the overall sound
of the synthesiser (generally with no knowledge about how long the notes will last).
A standard approach is “voice stealing”: replace the note that has been playing the
longest.

4.1.12 Factory

PROBLEM: Processes need to be started in a common context.
A process that wishes to start another process may not necessarily have access to all

of the context that the new process needs. For example, it is common to provide a pro-
cess with connections to the system services that it will need on startup—but a process
that wants to open a new graphical window may not itself have the direct access to
the display hardware that the window process requires. Similarly, a new process may
need to be assigned a unique ID (from an . Oracle), or registered in a global registry,
or safely enrolled upon a barrier, or started in a particular forking context so that it can
be safely terminated later.
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We use a factory process to solve this problem. A factory process forks new pro-
cesses in response to requests. Factory processes are often able to start many different
kinds of processes in response to different requests. The factory process can hold any
context that the new process might need; another process that wants to be able to start
new processes only needs to have a connection to the factory to do so.

Factories are used in object-oriented programming as well—for example, using the
◦ Abstract Factory pattern [87]. However, OO factories return a reference to the object
that has been created; process-oriented factories do not necessarily provide any way of
communicating with the new process, only acknowledging that the process has been
started.

Examples of Use

In CoSMoS simulations, new agents may be spawned into the simulation at any time,
either as a result of other agents’ actions—such as ants leaving pheromone trails—or as
a result of user interaction. ? Occoids allows the user to add and control predators that
interact with the other agents in the simulation. An agent process needs a considerable
amount of context when it starts up: it must be enrolled upon the simulation . Clock,
registered with the appropriate location process, and so on. This context is provided
by a factory process that spawns new agent processes based on an agent information
structure. The same mechanism is used for migrating agents between hosts using the
standard approach for simulating mobile processes: an agent being migrated packs up
its internal state into an agent information structure and then exits, and the structure
is forwarded to the agent factory on the destination host.

? RMoX makes similar use of factory processes to spawn appropriate driver pro-
cesses when new hardware is detected: the driver.core process implements both the
factory and . Oracle patterns, in that it keeps a list of drivers that are running, and is
able to start a requested driver if it is not already running.

4.1.13 Oracle

Oracle

PROBLEM: Several processes need to make deci-
sions based on shared information; or a single re-
source must be shared among several processes.

An oracle process provides a single location that
collects information on behalf of a group of other
processes. An oracle therefore mediates access to a
shared resource: it can ensure that the shared infor-
mation is updated and queried atomically, and can
automatically expire out-of-date information.

Oracle processes are usually passive servers
(. Client-Server); processes must push information
to them to keep them up-to-date. The interface provided by an oracle will depend on
the information it stores and the queries that it must be able to perform upon it; oracles
do not necessarily report all the information they hold for each query.

Caution is necessary in the application of this pattern: an oracle process may be a
. Bottleneck.
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Examples of Use

Choice over barrier guards can be simulated in environments that do not support it
directly by the use of an oracle process that has complete information about all barriers
in the system [245]. This is certainly a bottleneck since all synchronisations must be
serialised through the oracle, but the implementation is straightforward and easy to
formally verify [6], so it may be an appropriate implementation choice in embedded
systems where parallel performance is not a concern.

? Occade implements collision detection between sprites using an oracle process
that knows the locations of all of the sprites on the display. When a sprite’s position
changes, it reports this to the oracle; the oracle will then immediately return a list of
any other sprites with which it is now colliding (with the exception of those for which
collision detection is disabled).

The simulation framework used in ? Occoids and other CoSMoS simulations di-
vides space into regions, each of which is managed by a . Location oracle process that
knows about all the agents in that region of space [10]. This distribution of knowledge
reduces the bottleneck effect, although it does mean that agents may need to consult
multiple location processes to find out about all the other agents within the region of
space they can see. Occoids also uses an oracle process to map location IDs to the
corresponding mobile channel ends, allowing rapid access to remote locations.

Oracle processes are often used as caches: for example, the cache of loaded sprite
images in ? Occade, and the X server’s pixmap cache in ? occam-X11.

Oracle processes are used for real-time synchronisation in both ? occvid (for mul-
tiple media streams) and ? occam-X11 (for multiple sources of input events). In both
cases, two or more streams must carry consistent timestamps; this is achieved by fil-
tering each stream through a process that explicitly synchronises with another process
that keeps track of time.

An oracle process may also be used to serialise access to a shared external resource.
For example, the OpenGL graphics library requires that it is called from only one sys-
tem thread; in a process-oriented system where activity happens in many threads in an
unpredictable manner, this can be ensured by having a process that wraps the OpenGL
interface and provides a process-oriented interface to it.

4.2 Patterns of Structure

Patterns in this section describe features of the structure of the process network within
a program.

4.2.1 Pipeline

PROBLEM: Each value in a stream needs to be processed by several . Filter s in
turn.
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A pipeline is a chain of processes that follow the . Filter pattern, with the output of
each process connected to the input of the next [120, 155]. A pipeline is thus a . Filter
itself; values sent through the pipeline are processed by each of the processes in turn.

Because more than one value may be passing along a pipeline at a time, pipelines
can be used to enable parallel processing of a stream of values, provided sufficient
values are available to keep all the filter processes busy.

Pipelines are widely used, not just in process-oriented programming but also in
other approaches to software and hardware design, especially in “dataflow” appli-
cations [39]. The Unix shell has always supported pipelines—making this a pattern of
concurrent programming that has been around since the late 1960s. (Unix pipelines are
simple streams of bytes with fixed-size buffers; more recent systems designed along the
same lines, such as Microsoft’s PowerShell, support more expressive protocols.) The
◦ Chain of Responsibility pattern describes an object-oriented analogue of a pipeline.

Each process in a pipeline will have a number of places of internal buffering—
typically one place for a simple filter (see . Buffer). The pipeline as a whole will have
as many places of buffering as the sum of the number of places of buffering in each of
its components. Pipelines can be used to construct larger buffers from smaller buffers;
the simplest way to build an N-place blocking buffer is to construct a pipeline of N
one-place blocking buffers.

The compositional property of process-oriented design allows the filter processes
in a pipeline to be implemented in any way, including as networks of subprocesses,
provided they present a filter-style interface. Processes may have additional input and
output channels; for example, they may be . Valve processes, allowing control of the
values flowing through the pipeline, or . Delta processes, allowing the pipeline to
split. It is relatively common for a pipeline to include instances of the . Fan-Out pat-
tern, allowing internal parallelism for individual values; a generalised pipeline that
contains fan-out is sometimes called a spaceline [132].

In a high-throughput pipeline, the overhead of communication between the pro-
cesses may be significant. The use of buffered channels or buffer processes between
the processes in a pipeline can significantly improve the performance of the pipeline,
by allowing each process to process several input items before its output buffer fills
and context switching is necessary.

A expanding pipeline may be constructed recursively, starting with a single process.
To expand the pipeline, the last process executes as a parallel composition of itself and
a new process, connected by a channel. The standard example of this is a pipeline that
generates prime numbers by starting a new filter process to remove multiples of each
prime as it is found (figure 54).

Pipelines are an example of a type of regular process network that can be built
automatically using higher-order process constructors [48].

SOLUTION: Connect the processes together into a pipeline.

Examples of Use

Expressing a problem as a composition of filters is a common technique in most ap-
proaches to programming; a problem solved by composing functions in a functional
language can be translated straightforwardly into a pipeline of processes in a process-
oriented environment, introducing opportunities for parallel execution.
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PROC generate (CHAN INT out!)

INITIAL INT i IS 2:

WHILE TRUE

SEQ

out ! i

i := i + 1

:

REC PROC filter (CHAN INT in?, out!)

INT prime:

SEQ

-- First number received must be prime

in ? prime

out ! prime

CHAN INT thru:

PAR

-- Remove multiples of it

WHILE TRUE

INT n:

SEQ

in ? n

IF

(n \ prime) = 0

SKIP

TRUE

thru ! n

-- and recurse

filter (thru?, out!)

:

PROC primes (CHAN INT out!)

CHAN INT all:

PAR

generate (all!)

filter (all?, out!)

:

Figure 54: Expanding pipeline that generates prime numbers
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Parsers are often constructed in this way (see also . Grouper). The command-
line option parser in ? KRoC’s file module uses a pipeline internally (for simplicity
rather than parallelism, since performance is not a concern): a . Producer process emits
each raw command-line argument in turn, then a . Grouper groups options with their
arguments according to the option definitions, and a final process translates options
into the correct form for the application program to handle.

INMOS’s original occam 1 compiler was itself an occam 1 program, implemented
as a pipeline that performed tokenisation, parsing, name resolution, code generation
and output as separate processes. (Today’s equivalent is the nanopass approach used
by Tock [204].)

The rendering of 3D graphics is traditionally expressed as a pipeline—which is im-
plemented in hardware by all modern graphics cards, and in software by ? Flightsim
(figure 16).

The sort pump is an especially interesting example of a pipeline: a parallel sort-
ing algorithm that sorts streams of n values in O(n) time using a pipeline of n pro-
cesses [53]. Each process in a sort pump holds on to the highest value it sees, passing
others through to the remainder of the pipeline; when it sees the end of the list of val-
ues, it releases the value it is holding, meaning that values emerge from the other end
of the pipeline in order. Since communication is typically more expensive than com-
parison, sort pumps are rarely used in practical programs, although sorting networks
(which operate upon several values in parallel, effectively unrolling a conventional
sorting algorithm in time) are widely used for sorting small numbers of items in hard-
ware designs.

4.2.2 Fan-Out

Filter

Delta CollectorFilter

Filter

PROBLEM: Each value in a stream needs to be processed in several different ways.
Some problems can be broken down into several parallel activities, all of which

require access to parts of the same input data value to produce a result. For example,
implementing a reverberation effect in an audio processing system is usually done
by combining the outputs of separate simulations of direct transmission of the signal,
early reflections from walls and other objects, and damped tail resonance—all of which
require the complete input signal.

In a process-oriented system, we can do this by distributing the input values to
several different . Filter processes using a . Delta, and then recombining the results
using a . Collector, resulting in one output value for each input value. The delta may
simply distribute the same data to each filter, or it may extract only the parts required
by each filter; in an environment such as CHP where data values are immutable (so
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Figure 55: A boid process in Occoids

copying a value is free), the first option may be more efficient. The overall network has
a . Filter interface.

Fan-out problems can usually also be solved using . Pipeline, with different per-
formance characteristics. To transform a fan-out problem into a pipeline, the messages
sent along the pipeline should include both the input data and the results so far. If
the final result cannot be computed piecemeal, add an extra process to the end of the
pipeline to do it. The advantage of pipelining is that the input data does not need to be
copied, as it can be transferred from process to process as a single-owner reference—
but the disadvantages are that each piece of data must traverse each process in the
pipeline in turn, increasing latency, and the pipeline must be kept full in order to ob-
tain parallel execution. Pipeline is more appropriate when the cost of copying data in
the delta is significant, latency does not matter, and there is sufficient work to keep the
pipeline full.

The MapReduce framework for distributed computation—where problems are di-
vided up into smaller work units, each of which is processed individually, and the re-
sults recombined—is essentially an implementation of this pattern [67]. MPI’s scatter
and gather operations can be used in much the same way [144]—although process-
oriented implementations of these operations are often more efficient than their MPI
equivalents [40].

This pattern is for problems where the same data has to be processed in several
different ways; where different pieces of data need to be processed in the same way,
use . Farm.

SOLUTION: Use a . Delta to split the stream into several parallel streams, process
all in parallel, and combine them using a . Collector.
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Examples of Use

The agents in ? Occoids implement the boids rules for flocking: agents look for other
agents around them, and apply rules to the list of other agents to compute an acceler-
ation vector. In the original version of Occoids, the rules were implemented in parallel
using fan-out (figure 55).

Since the list of agents is a mobile array, this meant agents were doing a significant
number of unnecessary memory allocations and copies each time the rules were ap-
plied. This was refactored as described above into a pipeline, passing the list of visible
agents and the acceleration vector (initially zero) along the pipeline, and having each
rule add its own contribution to the vector.

In ? Flightsim, polygons are rendered by breaking them down into lines, then dis-
tributing the set of lines to four processes to render. Each rendering process clips the
lines to the area of the screen that it is responsible for, and delivers complete rendered
screen images to another process that writes them into screen RAM.

4.2.3 Location

Location Location Location

PROBLEM: Processes need to communicate based on their proximity in a mod-
elled space.

In a simulation or game, processes may be used to model regions or locations in
space: either a physical space, or some more abstract idea of space such as a state
space. Processes in such a system may need to communicate with other processes
that are near to them in space—for example, when agents within the space, which are
connected to their current locations, move around or observe their neighbourhood. We
can achieve this by using channels to connect each process to its immediate neighbours:
using processes to model space, and channels to model proximity.

Modelling a space in this way has several advantages. The simulation of space
can be parallelised: different regions of space can perform computations in parallel,
only synchronising where necessary. In addition, there is no need for agents within
the space to have an absolute sense of position (such as a global coordinate scheme);
they only need to have a relative idea of their position within the current location. This
allows the modelling of spaces where the locations cannot easily be numbered—for ex-
ample, Penrose tiles, or arbitrary graphs—or with unusual connectivity, such as Carte-
sian space with occasional wormholes.

When an agent moves across a boundary between locations, it “follows” the appro-
priate channel to its new location, updating its relative position to match. If an agent
moves across more than one location within a single step, it may need to follow several
links before it finds its new location. (A location therefore needs to be able to select a
link based on a relative position—which in Cartesian space is straightforward.)
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One approach to modelling proximity is to represent each neighbour relationship
as a point-to-point channel (figure 22). This requires a very large number of channels—
especially if diagonal connectivity needs to be represented, or more than two dimen-
sions are required—and is complicated to “wire up” correctly. A better solution is to
give each location a shared input channel, to which all its neighbours have access; this
way, only one channel per location is required, and arbitrary neighbour relationships
are easy to construct.

SOLUTION: Give each location process a shared input channel, and references to
the input channels of its neighbours.

Examples of Use

The TUNA ? Life simulation experimented with this pattern for simulating cellular au-
tomata efficiently: since Life cells only need to know the state of their neighbours, the
shared input channels are just used to receive state change messages on each timestep.
This work led to the ? CoSMoS generalised space model, which uses locations to repre-
sent spaces described by arbitrary functions, with explicit migration of agents between
hosts in a distributed simulation of space, and to later simulations which take a similar
approach to simulating a graph-based space (such as a system of blood vessels) as a
set of connected location processes.

The multiplayer adventure game used to teach the use of mobile channel ends in
the Kent concurrency modules uses this pattern to represent rooms [28]: each room in
the game has a shared input channel, with neighbouring rooms having references to
the channel labelled with movement directions. This pattern is especially useful for
adventure games because it is possible to only allow movement in one direction—for
example, a tall cliff that the player can fall off but not climb up.

4.2.4 Ring

PROBLEM: Information must be distributed among
several processes; or several processes must take
turns to access a shared resource.

A ring is a loop of . Filter processes: a . Pipeline
with its ends connected together. Rings are used to
distribute values among the processes in the ring,
with each process getting a chance to examine or
discard each value in turn. A value introduced
into the ring by one of the processes will circulate
around the ring until a process discards it. Rings
have a number of uses.

In classical occam—as in older physical network
topologies—rings were often used for routing data.
Packets labelled with addresses can be used to route
data between any of the processes in the ring: when a router sees a packet with its
address on, it removes it from the ring.

A ring can also be used for broadcasting data to all of the processes in the ring, by
having them examine each message and then pass it on. To prevent messages circu-
lating forever, the process that introduced each message to the ring is responsible for
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recognising it when it returns and removing or replacing it.
Finally, a ring can be used to share a resource fairly among multiple processes, with

each process getting a turn to use the resource—represented by a mobile reference, or
an abstract token—before passing it on. This approach also works for a fixed-size pool
of resources, all of which can be allowed to circulate in the ring; when a process needs
to use a resource, it waits to receive one and then removes it from the ring for as long
as it is needed, reintroducing it when it is no longer required.

Many applications that would have used rings in older process-oriented systems
can now be implemented using shared channels, or shared interfaces to server pro-
cesses. These newer approaches are often more efficient: claiming a shared channel to
send a message directly to a server is usually cheaper than doing several communi-
cations to send the message round a ring. However, rings used for token passing are
still useful, especially since mobile references can now be passed around a ring. A ring
can be used to share a writable resource efficiently among several processes, ensuring
that they access it in a predictable order—which is very useful for graphics render-
ing. In addition, the rate at which items pass around a ring can be easily controlled by
introducing a rate-limiting . Buffer process.

To a programmer used to working inside the constraints of the . Client-Server
design rules, the use of a ring will always be accompanied by a vague sense of unease—
it looks like a cycle! However, the rule for constructing a safe ring is relatively simple:
for a ring around which N items will circulate, ensure that the ring contains at least N
places of buffering [189]. This can be achieved, if necessary, by adding buffer processes
to the ring. The easiest way to ensure that this invariant holds is to make each process
responsible for providing enough buffering for all the items that it may add to the ring.
If the number of items will vary, the programmer can specify enough buffering for the
maximum number of items that will ever be present—or dynamically introduce more
buffering as more items are added to the ring.

It is important not to block the flow of data around a ring: if a value needs to be pro-
cessed, it is usually better to remove it from the ring and reintroduce it later, passing on
other values in the meantime, than to block the flow of other values during processing.
To support this, programs using rings around which multiple values pass often make
use of ring router processes, which handle interaction with the ring, removing interesting
values and presenting them for processing to a different process.

To shut down a ring safely (in an environment without poison), a shutdown mes-
sage must be circulated around all the processes in the ring. When a process decides
that it wishes to shut down the ring, it should send a shutdown message (ensuring
that there is enough buffering to do so—for example, by discarding an existing mes-
sage from the ring), then wait until it receives one back, discarding any other messages
received in the meantime; it can then exit. When a process receives a shutdown mes-
sage that it did not send, it must pass it on the next process and then immediately exit.
If more than one process may initiate shutdown, this approach will still allow the en-
tire ring to shut down safely—but a process initiating shutdown may get a shutdown
message back before all the processes in the ring have exited.

SOLUTION: Connect the processes into a ring, and circulate data between them.
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Examples of Use

? Flightsim is a good example of the classical-occam use of rings, with each player
having a ring router process. The messages circulating in the ring represent the ob-
jects in the flight simulator; they are updated as they pass each player’s router. Since
Flightsim was distributed over several Transputer chips, the ring was a physical one
between several different processors.

By far the most common use of rings in modern process-oriented systems is for
graphics, with a mobile reference to a graphics display being circulated between sev-
eral processes that draw on it in turn. This use is supported by ? KRoC’s raster mod-
ule; applications that use this strategy include all the ? TUNA and ? CoSMoS visual-
isations. The raster module’s protocols include support for shutting down the ring,
and provide a procedure to perform the shutdown process above in the correct way.
Standard processes are provided that can be used in the ring—for example, to clear the
display to a solid colour before other processes draw over it, and to limit the rate at
which the display is updated.

4.2.5 Client-Server

Client/Server

Server

Client

PROBLEM: A network of processes communicating using
request-response protocols needs to be arranged so as to avoid
deadlock and livelock.

The idea of a server process that performs actions in response to
requests from other processes is very common in concurrent soft-
ware design. An exchange between a client and server, which may
include messages in both directions, is called a conversation; the
two-way channel (or channel bundle, etc.) over which a client and
server converse is called an interface. A server process may itself act
as a client—for example, when fulfilling a request requires making
a request to another server—but connecting up a complex network
of clients and servers in an uncontrolled way can result in undesir-
able behaviours. The client-server design rules describe how client
and server processes can be implemented and connected together
in such a way as to guarantee freedom from deadlock and livelock.
This pattern therefore describes both the structure of client-server
process networks, and the behaviour of the processes within them; the safety of the
resulting system relies on both sets of rules being followed.

The client-server design rules, as originally stated, as are follows [257]:

• A conversation must be initiated by a client process. (This rule was written for
output-guard-less occam 2, where having the first message in a conversation sent
by a server process would result in the server being committed to that particular
client; in a more modern system a client may safely “initiate” a conversation by
taking an output from the server, provided the server is not blocked if the output
is not taken.)

• A conversation can include several communications in either direction, provided
both client and server agree. (The directions can be specified as a two-way pro-
tocol.)



CHAPTER 4. PROCESS-ORIENTED PATTERNS 119

• Each client process may communicate with only one server at a time. (A client-
server component may be implemented as several processes internally to allow
it to converse with several servers concurrently, one per client process.)

• A server may serve multiple clients, but it may only serve one client at a time.
(Servers may also provide different interfaces to different clients.)

• A server process must accept a request from any client it serves within a finite
time—one client cannot block another.

• A server process may act as a client to other servers during a conversation.

• Cycles within the directed graph of client-server relationships in a process net-
work are forbidden.

These rules have been shown to generate systems that are free of deadlock and
livelock—both through informal reasoning [257] and using CSP proof techniques [131].
(The no-cycles rule in particular can be intuitively understood once a cycle has been en-
countered; designers of distributed systems use the same rule.) The client-server pat-
tern is widely used in process-oriented design, to the point where programming lan-
guages have been designed explicitly to support it—for example, Honeysuckle, which
provides client-server interfaces as the primary mechanism for process interaction, and
statically enforces the client-server design rules [73].

As a simple protocol (one that carries single data values) can be regarded as a client-
server protocol, many process networks can be reasoned about using client-server
rules. In a . Pipeline, for example, each process is a server to the preceding process
and a client to the process that follows it. The parallelism in a pipeline comes from the
client-server pattern allowing a server process to continue to perform work on behalf
of a client after the conversation with it has finished, provided that it does eventually
return to service another request—something that would not be as straightforward if
a “pipeline” were built from OO objects. Similarly, a server can perform other work
between processing requests—for example, a cache server may periodically perform
cache expiry when it is not otherwise busy.

Since every conversation is guaranteed to complete in a finite time, it is always
safe (that is, it will not cause deadlock) to make a request to a server from a process
that does not itself act as a server. This allows client-server systems to be “driven” by
other kinds of system at the lowest level; a program may use . Phases to regulate the
overall behaviour of a client-server system, or be structured as a . Ring that processes
individual items using client-server requests.

Cycles can arise in client-server systems as a result of feedback loops in control sys-
tems, or (more commonly) in callbacks—where a request does not generate a response
immediately, but at some later time, requiring the server to make a client request back
to the originator in order to deliver the response. When a cycle cannot be avoided, it is
necessary to introduce a new process to break the cycle and maintain the design rules:
the . Intermediary and . Messenger patterns are two possible approaches.

An example of a cycle-breaking intermediary process is a component that acts as
both a client and a server, without actually having a client-server relationship between
the two interfaces—such as the overwriting buffer process shown in figure 45 [257].
This process works by using internal concurrency to ensure that its two interfaces
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never block each other. Note that the communications between the two “halves” of
the overwriting buffer do not follow the client-server rules, since the input side can
refuse requests from the output side when it is empty. Another approach would be to
use a process that forked a new messenger process to forward each request it received.
Such buffer processes are only really practical for relatively simple client-server proto-
cols (since a protocol that did not proceed in a predictable fashion could not easily be
buffered); in practice this is not a serious limitation.

In an environment without poison, shutting down a client-server network can be
awkward: a server process needs to know when other processes no longer need to
make requests to it. This can be done by providing an explicit “close” request (for
example, using the . Snap-Back pattern), but this relies on every server maintaining
its own reference count. In systems with garbage collection (such as most modern
object-oriented languages, and Haskell’s STM system), making the server end of the
interface a weak reference allows the runtime system to tell when it is no longer used
by any clients; future environments could allow servers to be notified by the runtime
when they can safely shut down. An alternative is to use some other mechanism—for
example, a barrier synchronisation, or a second server interface that only includes a
“close” request—to encourage all the clients and servers in the network to shut down
simultaneously—but wiring this up is awkward!

When reasoning about the safety of a client-server net-
work, it is important to know about all the client-server
relationships within the network. Process abstraction can
hinder this, since a subnetwork of client-server processes
that exposes client interfaces cannot be treated simply as
a single server: the user needs to know about the client-
server relationships that exist between the different inter-
faces in order to tell whether using it would create a cycle.
These are called client-server dependencies, and can be indicated on a process diagram
using arrows inside abstracted client-server processes [75].

The client-server rules were originally designed for occam 2, where client-server
relationships were implemented as pairs of channels, and the process network was
unable to change at runtime. The introduction of channel end mobility has allowed
greater flexibility in the construction of client-server systems.

For the purposes of the no-cycles rule, a client and server only have a relationship if
they actually communicate. Simply holding a reference to a server’s interface does not
cause a cycle if the holding process does not use the interface itself. This allows a server
process to hold an interface reference that it cannot use itself, but can provide to clients
for them to use; this is useful, for example, when implementing the . Location pattern,
with locations represented as server processes that hold references to the interfaces of
their neighbours. It can be useful to show references that are held but not used on
process diagrams; for example, using dotted rather than solid arrows.

The client-server relationships within a network may change dynamically, pro-
vided that the client-server rules hold at any point in time. For example, the client-
server relationship between a pair of processes may reverse at runtime—provided that
they both agree to the reversal at the same time (for example, by sending a special
message), and doing so does not introduce a cycle into the process network.

Current process-oriented environments support only limited static checking facil-
ities for client-server programming. Two-way protocols (section 5.3) would allow the
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protocols of client-server conversations to be specified and checked; more advanced
systems could also check that the client-server design rules are followed.

SOLUTION: Use the client-server design rules.

Examples of Use

The client-server design rules were first explored during the development of ? occam-
X11, a static client-server system implemented in classical occam. The pattern was
already in use before that, however, even within process-oriented programming: for
example, the iserver interface used by Transputer processes to communicate with a
host machine uses a client-server protocol over a pair of channels.

? Occoids (like most of the CoSMoS simulations) consists of a client-server core that
is driven from the agent processes by a system of . Phases, using phase synchronisa-
tion to ensure that the information stored in servers is updated in the correct sequence.
“Phase adapter” processes are used that enrol upon a phase system and make a re-
quest to a server in a given phase, hiding the details of phase interaction behind a
client-server interface. The visualisation processes in Occoids are similarly driven by a
. Ring.

? KRoC’s selector module provides a client-server interface, with application pro-
cesses acting as servers to the selector. When a file descriptor becomes ready for I/O,
the selector makes a request to the corresponding process; the response from the re-
quest indicates whether to wait for the file descriptor again, or to remove it from the
set. (See . Messenger for how client-server cycles are broken when using selector.)

? Occade is a client-server system, with the application processes usually being
clients to Occade’s servers. To deliver input and collision report events from Occade to
the application, buffer processes are used to prevent client-server cycles.

? RMoX largely follows the client-server pattern. Its implementation of TCP pro-
vides an example of dynamic reversal of a client-server relationship. Each connec-
tion is represented by a tcp.worker process, which acts as a client registered with the
tcp.server process while the connection is active. Once the connection is closed, and
the worker can no longer communicate with application processes, the relationship
reverses to allow the worker to unregister itself.

4.2.6 Farm

Worker Worker ...

in

out

PROBLEM: Each value in a stream needs
to be processed in the same way, with
work divided between several proces-
sors.

Many applications can be expressed
in terms of a stream of values being
passed through a . Filter process. Using
a single filter causes serialisation; when
the filter process has no internal state, it
is straightforward to parallelise the work
across a farm of worker processes, with a process that has the shape of a single fil-
ter [95, 122].
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Distributing work across a farm of worker processes is a common approach in con-
current programming: many frameworks provide tools for managing worker farms or
thread pools [154]. Embarrassingly-parallelisable problems are easily implemented us-
ing farms. Network server software is often written in such a way that each incoming
connection is assigned to one of a pool of workers [125].

In process-oriented systems, a farm can be implemented using a . Distributor pro-
cess to assign each input value to one of a pool of workers, and a . Merge process to
collect the outputs from the workers back into a single channel. When shared chan-
nel ends are available, this is even simpler: worker processes can read values from a
shared output end, and write their results back to a shared input end. However, in
distributed applications, the cost of claiming explicitly-shared channels may be signifi-
cant; implicitly-shared or unshared channels can offer significantly better performance
for distributed farming applications [211].

The downside of this simple approach is that it may reorder the values in the stream
after processing. For many applications this does not matter, but if the order must be
maintained, then one approach would be for the distributor and merge processes to
agree upon the order in which values should be delivered to and accepted from worker
processes. This may result in processes blocking if different values take different times
to process. An alternative would be to use a filter process to add sequence numbers to
values as they are received by the farm, and then reassemble the values into the correct
sequence (using a sorting buffer process) upon output; this would allow values to be
processed out of order.

Distributing work fairly among the workers requires some intelligence in the dis-
tributor process (see . Distributor); to maximise throughput, the distributor should
avoid ever blocking on an output by using choice to select a worker that is able to
accept a new value immediately. Using a shared output end instead of a distributor
solves this problem. As with . Pipeline, introducing buffering before and after the
worker processes can reduce communication overheads by allowing worker processes
to collect several values to work on at a time, not having to context switch until their
output buffer is full or input buffer empty.

Farms normally use a fixed-size pool of workers—often corresponding to the phys-
ical resources available for performing the work, such as the CPUs in a multicore sys-
tem, or more specialised hardware resources. However, there is nothing to prevent the
size of the pool from varying at runtime—often within defined bounds, to minimise
the overhead of keeping useless worker processes around while providing sufficient
parallel workers for the workload. If the cost of forking new processes is low com-
pared to the cost of processing an individual value, then farming can be done entirely
dynamically by forking a new worker process for each value received.

Just as a . Fan-Out network can be refactored into a pipeline, so can a farm, with
the primary benefit being easier wiring of the process network [160]; with the increased
availability of shared channels and mobile channel ends, this refactoring is rare in mod-
ern applications.

SOLUTION: Use a . Distributor or a shared-output channel to distribute work
to several worker processes, and a . Merge or shared-input channel to collect the
results.
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Examples of Use

Some early work on the ? TUNA project experimented with different approaches to
farming for distributed applications [211].

The various implementations of ? LOVE—like most software synthesisers—imple-
ment polyphony by assigning notes to one of a farm of oscillator pipelines (see . Dis-
tributor).

4.2.7 Intermediary

Intermediary

PROBLEM: Two processes need to communicate,
but there is no clear directional relationship be-
tween them.

Many process-oriented systems contain large
numbers of processes that can be considered peers:
they need to exchange information on equal terms.
However, it can sometimes be inconvenient to de-
sign processes so that they may at any time respond
to a request from another process: for example, in a
system following the . Client-Server design rules,
connecting peers directly to each other would cause a violation of the no-cycles rule
(and potential deadlock).

This problem rarely arises in the real world because real-world communication
is always mediated by some kind of intermediary. For example, communication by
speech can be considered as both parties interacting with the air between them [107].
This pattern solves the problem in a similar way: by introducing an intermediary pro-
cess that both processes can safely interact with. This is distinct from providing an
. Oracle process that all the peers share: using individual intermediaries allows greater
concurrency, at the cost of requiring a greater number of processes.

An intermediary process is often a kind of . Buffer, or a pair of buffers to allow
two-way communication. Overwriting buffers are often used to allow decoupling in
time without needing to provide large amounts of storage.

SOLUTION: Introduce a new process that can have the same kind of relationship
to both parties.

Examples of Use

In some of the TUNA ? Blood Clotting simulations, clots are represented by processes
that span several locations. When two clots collide, they must merge together into a
single larger clot. Clots can communicate using channel ends that they place in loca-
tions, but there is no clear client-server relationship between clots: they may encounter
each other from any direction and at any time. To allow orderly communication, each
agent carries around an intermediary process that can handle requests from itself and
from other agents [187].

In the ? CoSMoS implementation of a small-world network, edges in the network
are occam-π channel bundles with one channel in each direction, to allow arbitrary



CHAPTER 4. PROCESS-ORIENTED PATTERNS 124

communication between vertices. However, channel bundles have an inherent direc-
tion (with client and server ends), which meant that the operations that changed con-
nections within the network needed to be able to handle both types of ends. The solu-
tion was to represent each edge as two channel bundles connected by an intermediary
(actually a parallel pair of . Buffer s), meaning that vertices only ever see client ends
of channel bundles.

4.3 Patterns of Cooperation

Patterns in this section describe patterns of communication or synchronisation be-
tween multiple processes.

4.3.1 Acknowledgement

PROBLEM: Processes need to synchronise for an extended period: for example, the
execution of a request.

The usual synchronisation objects only provide a way for processes to synchro-
nise at a point in time—for example, a synchronous channel communication or barrier
synchronisation will only complete once all processes are attempting to synchronise.
However, it is sometimes useful for processes to synchronise for a period of time. The
pause process (. Valve) is an example of this: it is used to block messages passing on
a stream for a period of time. Server processes (. Client-Server) sometimes need to
do this as well: a client making a request to a server may want to wait for the server’s
corresponding action to complete (rather than allowing the server to perform its action
at a later time—an asynchronous request).

The conventional solution in process-oriented programs is for the processes to use
conventional synchronisation objects, but synchronise twice—once at the start of the
period, and again at the end. This ensures that all processes enter and leave the syn-
chronisation period together. When channels are used, the second communication may
be in the same direction as the first (as in figure 50), or it may be in the opposite direc-
tion; in the latter case it can be used to return the result of an operation.

The second synchronisation must always follow the first: it is thus part of the pro-
tocol used on the synchronisation object. However, most existing implementations
of protocols do not allow actions to be performed between individual messages in
a protocol—which argues for a more powerful idea of protocols based upon session
types (section 5.3).

Extended synchronisation is an environment feature designed to support this kind
of synchronisation, allowing actions to be performed while the processes are synchro-
nised. However, not all environments provide extended synchronisation, and some
(such as occam-π) only provide extended input, meaning that only one party in a
synchronisation can perform an action. Call channels allow extended synchronisation
with data passing in both directions between the processes, but similarly only allow an
action in one process (the callee).

SOLUTION: Synchronise twice: once at the start of the period, and again at the
end.
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PROC io.par <VALUE > (VAL VALUE initial.value ,

[]CHAN VALUE inputs?,

[]CHAN VALUE outputs !)

INTIIAL VALUE value IS initial.value:

[SIZE inputs]VALUE input.values:

WHILE TRUE

SEQ

PAR

PAR i = 0 FOR SIZE inputs

inputs[i] ? input.values[i]

PAR i = 0 FOR SIZE outputs

outputs[i] ! value

... compute new value from input.values

:

Figure 56: I/O-PAR process

Examples of Use

Several kinds of . Valve process can usefully be implemented using this pattern, where
the effect on the stream must last for a period of time: for example, suppressor pro-
cesses in a subsumptive control system.

This pattern can be used to simulate barrier synchronisation using only point-to-
point channels (figure 8); the barrier process achieves point-in-time synchronisation of
a group of processes by overlapping their individual synchronisation periods.

4.3.2 I/O-SEQ and I/O-PAR

PROBLEM: A network of processes that periodically exchange data needs to be ar-
ranged so as to avoid deadlock and livelock.

In a network of processes where the state of each process must be computed peri-
odically based upon the states of other processes—such as a physical simulator, or a
cellular automaton—the simplest way to arrange for the processes’ states to be com-
municated to those they depend upon is to connect them with channels. Processes can
then periodically perform an exchange, where they receive the state of all the processes
they depend upon, and communicate their state to all their dependents [257].

When the graph of dependencies may contain cycles, processes perform an I/O-
PAR exchange: each process performs all its input and output communications in par-
allel (figure 56). When cycles are not present, the I/O-SEQ pattern can be used, where
each process first performs all its input communications in parallel, then performs all
its output communications in parallel (figure 57). The advantage of the I/O-SEQ ap-
proach is that the process’s new state can be computed between the input and output
communications—so when the network has connections to the outside world, each set
of values fed in will result in a new set of values coming out immediately, whereas in
the I/O-PAR approach the new state will be delayed by one exchange. I/O-SEQ can
thus be considered a generalisation of the . Pipeline approach to arbitrary cycle-free
networks.

Since an I/O-PAR or I/O-SEQ exchange involves all the processes in the network
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PROC io.seq <VALUE > (VAL VALUE initial.value ,

[]CHAN VALUE inputs?,

[]CHAN VALUE outputs !)

INTIIAL VALUE value IS initial.value:

[SIZE inputs]VALUE input.values:

WHILE TRUE

SEQ

PAR i = 0 FOR SIZE inputs

inputs[i] ? input.values[i]

... compute new value from input.values

PAR i = 0 FOR SIZE outputs

outputs[i] ! value

:

Figure 57: I/O-SEQ process

(although not necessarily at the same time) and the pattern of communications is iden-
tical for each exchange, these patterns give processes a shared sense of time without
the need for global barrier synchronisation. The lack of global synchronisation means
that this pattern can offer greater opportunity for parallel execution than regulating
computation using . Phases or a . Clock: the computations in different timesteps can
safely overlap.

I/O-SEQ components can be included in an I/O-PAR network provided that there
are no cycles consisting solely of I/O-SEQ components; furthermore, as I/O-SEQ ex-
changes, I/O-PAR exchanges, and . Client-Server conversations are all guaranteed to
complete in a finite time period, it is safe to combine all three patterns of communi-
cation within a single program [257]. A server process may offer a choice between re-
sponding to a request on one of its interfaces, and any communication in an exchange;
once it begins an exchange, it must complete it before returning to act as a server. In a
language without output guards—making choice over an exchange impossible—this
can instead be implemented by . Polling the server interfaces between exchanges.

Using this pattern involves doing several communications for each process on each
timestep, and requires all processes to be involved in every exchange. If the cost of
communication is a significant overhead, and the state of few processes in the network
change on each iteration, the . Lazy Updates pattern can allow significantly more effi-
cient communication at the cost of greater complexity in the individual processes.

SOLUTION: Use the I/O-SEQ or I/O-PAR design rules.

Examples of Use

These patterns are generally used in network simulation and dataflow systems where
every process needs to recompute its state on each timestep. The Kent digital cir-
cuit simulator [252], several Transputer “butterfly” FFT implementations [258], and
the early implementations of ? Life are structured as I/O-PAR systems; the various
implementations of ? LOVE are I/O-SEQ systems.

It is often useful to perform a single I/O-PAR exchange between a group of pro-
cesses when they start up to synchronise their initial states, before proceeding with a
more complex pattern of interactions such as . Lazy Updates.
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4.3.3 Phases

PROBLEM: Several processes need to safely update and read from shared storage.
Process-oriented designers are strongly discouraged from having processes share

memory, instead using single-owner references to communicate the ownership of re-
sources around a process network. However, for applications where data values need
to be broadcast to many processes, this can result in significant overheads from the
communication—in terms of both design complexity and execution efficiency. The use
of phases can provide a way for processes to share memory safely and efficiently.

When using this pattern, the execution of a program in divided into several phases,
with a barrier or . Clock used to ensure that all processes are synchronised at the end
of each phase. Phases often repeat in a cyclic fashion. Each resource (such as a region
of shared memory) has a set of access permissions defined for it during each phase; the
permissions change only when the phase changes. The permissions are defined so that
CREW conditions are maintained: each resource may only be written to by one process
at a time, but may be read by any number of processes when it is not being written to.

As an example, consider a simulation in which each agent needs to observe the
states of its neighbours during each timestep. We can solve this problem by providing
all the agents with access to a phase-protected shared array, and dividing each timestep
into two phases. In the first phase, each location in the array is writable to just one
agent, which writes its state into its location within the array. In the second phase, all
locations are read-only, and each agent can read the states of all its neighbours from the
array. The execution of the simulation only requires two barrier synchronisations per
timestep—a considerable improvement over access control techniques such as locking
or transactional memory, where each access potentially requires a synchronisation.

The same approach can be used to control access to other kinds of shared resources.
For example, in a . Client-Server system, clients may exchange information with
server processes. Phase transitions can be used to guarantee ordering of client-server
operations; for example, to ensure that all processes storing data have done so before
any processes that are retrieving data get to run. Similarly, phases may be used to
regulate changes to client-server relationships: one way of dealing with two-way rela-
tionships between peers is to make them clients and servers, but swap the direction of
the client-server relationship in different phases.

A disadvantage of the phased approach over directly representing data dependen-
cies using channels (. Lazy Updates) is that no processes can proceed to the next phase
until the previous one is complete—even if the data they need has already been writ-
ten. Using a single phase system in a large program may therefore lead to poor per-
formance; it can be better to break it up into smaller phase systems protecting smaller
sets of shared resources, with appropriately-sloppy synchronisation between them (see
. Clock). However, this can be mitigated somewhat by using parallel composition to
overlap computation with phase synchronisation. Figure 58 shows an agent process
that can immediately start computing its new state once it has examined its neigh-
bours, while requiring phase synchronisation to complete in parallel before it publishes
its new state.

This style of programming—where many processes operate upon shared resources,
synchronising periodically to change access permissions—is known as the Bulk-Synch-
ronous Parallel approach [232]; the BSP literature contains many examples of applica-
tions using this synchronisation model.
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PROC agent (BARRIER bar)

WHILE TRUE

SEQ

SYNC bar -- phase 0: read from world

... read state of neighbours

PAR

... compute new state

SYNC bar -- phase 1: write to world

... write my state

:

Figure 58: Overlapping computation with phase synchronisation

At the moment, no process-oriented environment offers direct support for phases;
indeed, in occam-π it is necessary to disable static checking for phase-protected mem-
ory in order to allow it to be shared. Section 5.4.5 discusses possible language bindings
for phase-protected resources.

SOLUTION: Divide the work into several phases, with different access permis-
sions for the shared resources in each phase.

Examples of Use

This technique was first explored for efficient inter-cell communications in the ? TUNA
Life simulations, with a shared array and a barrier synchronisation [203]. Further
thought was required when this pattern was later combined with . Lazy Updates,
since to achieve true laziness the cell processes had to resign from the barrier when they
were not being updated. Getting the processes to re-enrol atomically without skipping
phases was eventually solved through the use of explicit . Acknowledgement. In
addition, the Life simulation experimented with combining phases and atomic opera-
tions, to allow processes to “vote” upon actions within a single phase.

The ? CoSMoS generic space model uses a phase system to regulate access to server
processes for two purposes: to ensure that all agents get a consistent view of the world
by ensuring that all changes to the world have completed before observation begins,
and to ensure that local copies of remote locations in a distributed simulation are up-
dated before they are observed [201].

4.3.4 Clock

PROBLEM: Several processes need to share a sense of time.
Applications in which processes must share a sense of time are common—for near-

real time in games, for simulated time in simulations, and for more abstract ideas of
time such as . Phases. We can implement this in a simple way by using a barrier, upon
which all the processes synchronise at the end of each timestep. A clock is therefore the
combination of a barrier and a variable that records the current timestep (the number
of barrier synchronisations); the terminology used for clocks (enrolment, synchronisa-
tion, and so on) is the same as that used for barriers.
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Many process-oriented environments already provide a way of synchronising pro-
cesses to a real-time timer (such as occam’s TIMERs). It is frequently useful to limit the
real-time rate at which a clock can synchronise—for example, to ensure that a game
does not run so fast it is unplayable, while allowing it to slow down gracefully if the
CPU cannot keep up, or to slow down a simulation to make the visualisation more
comprehensible. In these cases, all that is necessary is a process synchronising upon
the clock that does a fixed real-time delay between synchronisations.

A distributed program may need to synchronise clocks between several different
hosts. To do this, have a process on each host enrolled upon the clock which per-
forms a network synchronisation (for example, both sending and receiving an asyn-
chronous message) with the corresponding processes on its neighbouring hosts dur-
ing each timestep. This may represent an unacceptable overhead if network latency is
much higher than the time that it would normally take the clock to cycle. In these cases,
it may be possible to use sloppy synchronisation, where the processes only perform the
network synchronisation every N ticks, allowing clocks to drift apart slightly. (For ex-
ample, if each simulation timestep is divided up into multiple phases, there may be no
need to synchronise the phase changes between the hosts; the network synchronisation
only needs to happen once per simulation timestep.)

The simplistic synchronisation approach described here is inefficient when a pro-
cess does not need to perform an action on every timestep; see section 5.4 for how
clocks can be bound into process-oriented programming environments, allowing more
efficient synchronisation.

SOLUTION: Have the processes synchronise upon a barrier at the end of each
timestep.

Examples of Use

The term “clock” comes from the X10 programming language, which provides clocks—
barriers with counters—as the primary mechanism for synchronising processes [62].
Many X10 programs provide examples of the use of this pattern.

All the ? CoSMoS simulations use this pattern to simulate time, with distributed
simulations using sloppy synchronisation in the way described above.

4.3.5 Lazy Updates

17 5

23 42

=A1+A2 =B1+B2 =A3+B3

PROBLEM: Several values with arbitrary de-
pendencies between them need to be up-
dated efficiently.

Process-oriented programming provides a
good way of modelling systems of data de-
pendencies. A spreadsheet is an example of
this kind of problem: each cell has a value
that may be entered by the user, or computed
from the values of other cells. When the user
changes the value of a manually-entered cell,
the spreadsheet should only recompute the
values of the other cells that need to change—and it should do so with as great a degree
of concurrency as possible, to take advantage of parallel hardware.
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We can do this by representing values as processes, and data dependencies as chan-
nels. When the value represented by a process changes, it should send the new values
to all of the processes that depend upon it in parallel; they can then recompute and
send out their new value, and so on, with the changes “rippling out” through the sys-
tem, resulting in only the values that need to change being recomputed. Note that if
a computation returns the same result that it did before, there is no need for a change
notification to be sent out.

When the graph of dependencies contains cycles, this approach will not terminate
unless the system converges upon a steady state. If this behaviour is desired—for
example, when simulating a cellular automaton—then some additional mechanism
is necessary to ensure that new values are propagated out fairly between processes.
To do this, enrol all value processes upon a barrier, and allow one propagation step
per barrier synchronisation (figure 59). On each step, the barrier cannot complete un-
til all processes have had a chance to send out a new value; as communications are
synchronous, each process only needs to wait for new input values until the barrier
completes.

The downside of this approach is that every cell process must engage in every
barrier synchronisation, even if its value does not need to be recomputed. To make
updates truly lazy again, . Just In Time can be used to dynamically spawn value pro-
cesses only when the value actually needs to be updated.

Shared memory protected by . Phases may be used to avoid the need to transfer
values between processes, with the channels only used for synchronisation.

SOLUTION: Represent each value by a process, and each dependency by a chan-
nel; when a value changes, have its process communicate the new value to its de-
pendents.

Examples of Use

The ? Life simulations (and other cellular-automata simulations built for TUNA) used
this approach. Since a typical Life grid is mostly static, only performing recompu-
tations where necessary improved performance by approximately a factor of 15 on a
randomly-initialised fixed-size grid [203].

4.3.6 Just In Time

PROBLEM: Entities are modelled by processes—but the overhead of actually having
a process for each entity all the time is excessive.

Modelling things as processes is a powerful technique, but even in an environment
with lightweight processes, it may be impractical to always have a process running
for every modelled entity when the entities are very numerous. Fortunately, it is often
unnecessary to actually run the processes; for example, regions of space in a simulation
can be modelled by processes (see . Location), but the space may only be sparsely
occupied, so regions spend most of their time sitting empty.

In these situations, we can get away with delaying the construction of these pro-
cesses until they are actually required, while making this transparent to the other pro-
cesses that communicate with them—that is, we construct processes “just in time”. We
do this by having the interface of the unconstructed processes be provided by an ether
process (figure 60); when the ether receives a request on one of these interfaces, it can



CHAPTER 4. PROCESS-ORIENTED PATTERNS 131

PROC cell <VALUE > (BARRIER bar , VAL VALUE initial.value ,

[]CHAN VALUE inputs?,

[]CHAN VALUE outputs !)

INITIAL VALUE value IS initial.value:

INITIAL VALUE prev.value IS value:

[SIZE inputs]VALUE input.values:

SEQ

... do an I/O-PAR exchange of initial values

WHILE TRUE

INITIAL BOOL recompute IS FALSE:

SEQ

CHAN SIGNAL synced:

PAR

SEQ

-- If value has changed , send to dependents

IF value <> prev.value

SEQ

PAR i = 0 FOR SIZE outputs

outputs[i] ! value

prev.value := value

SYNC bar

synced ! SIGNAL

-- Read input values until the barrier completes

INITIAL BOOL reading IS TRUE:

WHILE reading

ALT

ALT i = 0 FOR SIZE inputs

inputs[i] ? input.values[i]

recompute := TRUE

synced ? SIGNAL

reading := FALSE

IF recompute

... recompute value from input.values

:

Figure 59: Cell process using lazy updates
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Figure 60: Ether processes model as-yet-unused space

start up the real process and . Hand-Off the interface to it. The ether is therefore a kind
of . Factory; it must store enough information to be able to construct the appropriate
processes as required.

If processes are constructed just in time as they are required, it is also generally use-
ful to have them be destroyed when they are no longer required. This can be achieved
by having a process be able to shut down and store a representation of its internal state
in the ether—an example of process mobility used in time, rather than space. It may
not be necessary for a process to store any state at all in the ether if it is sufficiently
simple or its state is stored elsewhere—for example, if it is a . Lazy Updates process
updating memory protected by . Phases.

If the cost of forking a new process is significant, the programmer may prefer to
have processes only shut down once they have not been used for an appropriate pe-
riod of time. If processes can be forked cheaply, a simple approach would be to write
processes that only handle one request and then immediately suspend again—such a
process is effectively a passive object.

An advantage of this approach is that the ether does not always have to fork the
same kind of process for each request; it only has to provide a process with the correct
interface. Where the same functionality can be implemented in different ways, the
ether can pick an implementation based on its own criteria; for example, if it is running
on a heavily-loaded host, it may choose an implementation that uses fewer resources.
The ether may even choose to fork a process that can provide several interfaces at
once—for example, simulating space at different granularities.

The ether may be a . Bottleneck; this can be mitigated by dividing it into several
coordinated processes.

The ◦ Flyweight pattern—where an object serves different purposes through differ-
ent references to it—is related to this [87], but it is generally harder in OO environments
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to replace the flyweight with a use-specific object when it is required (unless each ref-
erence is via a proxy object). The natural decoupling of synchronisation objects from
process identity in process-oriented programming allows a “flyweight” space process
to be replaced with a real space process.

SOLUTION: Have channels to unused resources be connected to an “ether” pro-
cess; when a resource is used for the first time, have the ether process fork a real
process for it and . Hand-Off the channel end.

Examples of Use

The ? TUNA Life simulation modelled cells this way [203]. The choice of algorithm
used to implement Life can be made based on the pattern of cells in the grid (for exam-
ple, HashLife works well for repeating patterns); the ether can make this choice when
forking new processes.

4.3.7 Messenger

Messengerfork

PROBLEM: A server process needs to make a re-
quest to a client.

In a . Client-Server system, cycles in the graph
of client-server relationships must be avoided—but
the programmer will occasionally encounter situa-
tions where this is unavoidable: a server process
needs to make a request to a process that usually
acts as a client to it, or two server processes need to
act as clients to each other. Sometimes this can be
solved by using . Phases to dynamically rearrange
the client-server relationships in a network, but this is difficult in cases where commu-
nication does not happen in regular patterns.

A simpler solution is to fork off a new process that makes the request and then
exits: a messenger. Since the new process is only a client, it cannot create a cycle in the
graph of client-server relationships.

In a system with . Phases, it may be necessary to ensure that the messenger makes
its request in the same phase it was forked in. This can be achieved by enrolling the
messenger upon the phase barrier; the barrier will not be able to complete until the
messenger has exited. (This is an example of a case where ownership of a reference—
the barrier enrolment—is all that is required; a compiler for a process-oriented lan-
guage cannot warn about the reference being unused in this case.)

A messenger is the embodiment of an asynchronous message. Messengers can be
used to simulate infinitely-buffered channels—but they can also be used to perform
more complicated actions; for example, a messenger can engage in a complicated pro-
tocol, making several requests, or making requests to multiple processes.

A messenger process may communicate with the process that spawned it, provided
it does so in a way that does not violate design rules. For example, a server process may
spawn a messenger to make a request to another server process; once the messenger
has finished, it can then make a request to the original server to indicate completion.
Because the messenger only ever acts as a client, the client-server design rules are not
violated. A server process may even use a messenger as a way of sending a request to
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itself—knowing that the messenger will be blocked until the server process is able to
accept more requests.

Messenger and . Intermediary are both options in cases where server processes are
peers but need to communicate. Since using a messenger involves the cost of forking
a new process, an intermediary is a better option when many messages need to be
sent and the cost of forking would be prohibitive; but a messenger is a better option
when communication is sporadic or to unpredictable destinations, and maintaining a
permanent intermediary would be an unacceptable expense.

SOLUTION: Fork off a temporary worker process to do the communication.

Examples of Use

In early versions of the ? CoSMoS space model, locations were directly responsible
for the migration of agents; a location had to . Hand-Off the agent’s channel end to
the destination location when it crossed the boundary. This violated the client-server
design rules, since locations were both clients and servers to each other. To solve this,
when an agent had to be migrated, a messenger process was forked to introduce the
corresponding channel end to the new location. (Later versions were refactored so that
agents were responsible for migration, removing the need for the extra process.)

The ? RMoX network stack uses messengers to implement ARP. When the hard-
ware address of a machine on the Ethernet to which a packet must be sent is not known,
the network stack sends an ARP request packet instead, and forks a messenger process
to resend the original packet after a delay, by which time an ARP reply will probably
have been received.

In the selector module in ? KRoC, processes that want to block on I/O operations
act as servers to the selector process. As a server would not be able to make a request
to the selector itself in order to change the set of file descriptors it is performing I/O
upon, the module provides a selector.delayed.add procedure which starts a messen-
ger process that acts as a client to the selector to request a change safely.

4.4 Patterns of Mobility

Patterns in this section describe how the structure of the process network—or, more
generally, the allocation of resources to processes—may change at runtime.

4.4.1 Private Line

PROBLEM: Processes need to meet in public, but have private conversations.
Channels with shared ends can be used to allow several processes to communicate

with each other, without needing to set up point-to-point channels corresponding to
every possible communication, or requiring processes to route messages. However,
shared channels—like shared radio frequencies or telephone party lines—do not cope
gracefully with long conversations: explicitly claiming a shared channel for a long
period of time will block other processes from using it.

The solution is to make use of channel mobility. A process that wishes to engage
in a conversation over a shared channel should first allocate a new mobile channel,
and then use the shared channel to communicate one of the ends of the mobile chan-
nel to the process with which it wishes to communicate. The two processes are then
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connected by the mobile channel—a private line, over which they can have as long a
conversation as they like without tying up the shared channel.

The use of private lines can be used to simulate explicit sharing of channels in en-
vironments that only have implicitly-shared channels (or do not have protocols that
would allow protracted communication over a shared channel): rather than claiming a
shared channel, you send a private line. This emulation could be implemented trans-
parently by a process-oriented environment—and if implicitly-shared channel ends
can be implemented more cheaply than explicitly-shared channel ends, doing so would
have performance advantages. The cost of allocating the private line could be reduced
by smart management of references: allocate a new private line whenever a new shared
channel end reference is created, and reuse it for all subsequent “claims” of that chan-
nel end.

SOLUTION: Use public communication to pass a mobile channel end that can be
used for a private conversation.

Examples of Use

Early ? TUNA experiments with farming made use of private lines to communicate
between the farmer and worker processes, with a significant performance advantage
in distributed farms owing to the high cost of distributed shared channels.

? RMoX makes heavy use of private lines for connections between application pro-
cesses and hardware drivers (see . Snap-Back).

4.4.2 Snap-Back

PROBLEM: Processes need to keep track of how many other processes they are com-
municating with.

In applications where processes need to control how many other processes they
communicate with—typically, where a process is managing a fixed-size pool of re-
sources—it is useful to treat the “user” end of a . Private Line as a single-owner token,
the ownership of which confers the right to use the resource. When a user is finished
with the resource, they should return the channel end to the issuing process—which
can be done as a communication through the channel itself. Figure 61 shows a two-way
protocol in occam-π with a close message that uses this approach.

It is safe for a user process to . Hand-Off its end of the private line to another
process, provided it does eventually get returned in the correct way.

One possible problem with this approach is that protocols in process-oriented en-
vironments typically can only provide type safety; they cannot guarantee that the ref-
erence returned is actually the one that is being used to make the request. (The same
problem applies to . Loan.) This pattern could be explicitly supported in protocol def-
initions by allowing a “return self” operation to be specified; given a sufficiently ex-
pressive two-way protocol facility (section 5.3), this could be done automatically when
the protocol reached a state where no further requests were possible.

SOLUTION: Require mobile channel ends to be returned to the originating pro-
cess as the final communication on the channel.
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CHAN TYPE CONNECTION:

PROTOCOL CONNECTION.REQ

CASE

... other requests

close; CONNECTION! -- snap -back message; no response

:

PROTOCOL CONNECTION.RESP

CASE

... responses

:

CHAN TYPE CONNECTION

MOBILE RECORD

CHAN CONNECTION.REQ req?:

CHAN CONNECTION.RESP resp!:

:

Figure 61: A client-server connection using snap-back

Examples of Use

? RMoX makes extensive use of this pattern to control access to hardware devices.
For example, it does not make sense for more than one process to make use of a USB
device; to prevent this, connections to the low-level USB driver require the client end
of the connection to be returned through the connection when no longer needed.

4.4.3 Loan

PROBLEM: Several processes must compete for individual access to a resource.
When a server process is used to encapsulate a single-owner resource, one way to

allow client processes to make use of it is to provide requests that cover all the possible
operations that the client might want to perform. This may require data to be copied,
though, particularly if the common operations involve modifying or reading parts of a
large resource.

An alternative is to allow a client to borrow the resource: move the reference into
the client process, which can then perform whatever operations it likes—which might
include reading or modifying the resource, or even lending it to another process in
turn. When the client is finished, it returns the reference to the server. This is imple-
mented using a three-step protocol (figure 62):

borrow; RESOURCE!→ lend; RESOURCE?→ return; RESOURCE!

This pattern is an example (in fact, the most common example) of a two-way pro-
tocol that includes more than two messages: it cannot be safely implemented using a
protocol system that only allows request-response interactions (such as call channels).
In such a system, an alternative approach would be to allow clients to send the server
a closure that the server can execute with the shared resource as a parameter.

The downside of this approach is that it serialises execution: the processes that wish
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CHAN TYPE CONNECTION:

PROTOCOL CONNECTION.REQ

CASE

... other requests

borrow; RESOURCE -- (1), replies "lend"

return; RESOURCE -- (3), done

:

PROTOCOL CONNECTION.RESP

CASE

... other responses

lend; RESOURCE -- (2), replies "return"

:

CHAN TYPE CONNECTION

MOBILE RECORD

CHAN CONNECTION.REQ req?:

CHAN CONNECTION.RESP resp!:

:

Figure 62: A client-server connection that loans a resource

to use the resource must queue up to use the server process, and they must copy out
the data that they want from the resource. If this pattern is being used to distribute the
same data to many processes that do not want to modify it, then using shared memory
protected by . Phases will probably allow greater concurrency.

As with . Snap-Back, there is no guarantee that the reference returned is the ref-
erence that was originally loaned. For many applications this would be acceptable: a
user could reasonably allocate a new resource and copy the contents over (for example,
if an array was being resized), secure in the knowledge that nothing else can have a ref-
erence to it. For other applications—for example, where the resource being loaned is a
piece of hardware—it would be helpful to ensure that the same reference is returned;
this could be achieved through more expressive protocols (section 5.3).

SOLUTION: Use a three-step protocol to request, lend and return a single-owner
reference to the resource.

Examples of Use

. Snap-Back is a specialisation of this pattern, where the resource is a channel that is
used to return itself.

The ? CoSMoS space model uses this approach to distribute views of space to
multiple processes. A view is a single-owner reference to a list of other agents within
a . Location, normally held by the location; other processes (agents, network proxies,
visualisation processes) can borrow the view, returning it once they have retrieved the
data they need.



CHAPTER 4. PROCESS-ORIENTED PATTERNS 138

4.4.4 Terminal

Terminal
control

PROBLEM: Connections between processes need to be dy-
namically rearranged under the control of another process.

Mobile channel ends allow a process network to be dynam-
ically reconnected at runtime. In process-oriented environ-
ments, it is not possible for one process to directly reconnect
the channels of another process, since that would mean break-
ing encapsulation; instead, channel ends must be managed by
the processes to which they are connected.

A terminal process manages mobile channel ends on behalf
of another process, connecting them internally to static chan-
nels. This allows processes written as if they use only static
channels to be dynamically reconnected. A terminal process
provides a server interface that allows other processes to pro-
vide it with a new channel end, or to take away an existing channel end.

The typical applications for terminal processes are interactive or adaptive systems,
where process networks need to be constructed by a controller process. The controller
can start up new component processes (along with their associated terminals), allo-
cate new channels, and pass the ends of the channels to the terminal processes. Both
terminal processes and controllers follow fairly regular forms; future process-oriented
environments may be able to provide standard components for constructing process
networks described by data structures.

Central control is not necessary, however; dynamic process networks can also be
managed in a decentralised manner, where larger components reconfigure their inter-
nal processes dynamically. This kind of architecture is useful for dataflow systems,
for example, where components can reconfigure themselves to suit the data passing
through them.

Mobile channel ends can be connected to static channel ends inside the terminal in
several different ways. When each static channel end may only be connected to one
mobile channel end, the terminal can use . Glue or . Buffer processes. Alternatively,
a terminal may allow several mobile channel ends to be connected, in which case it
could act as a . Delta, . Distributor, . Merge or . Collector process where the set of
connected channels can vary at runtime.

More complex communication semantics are also possible. For example, it may
be preferable that an application should not block when some of its terminals do not
have channels connected to them; in this case, an output terminal should behave as a
. Black Hole when no mobile channel is connected.

SOLUTION: Use terminal processes that connect a set of mobile channel ends to
a static channel end, with a control interface to allow channel ends to be connected
and disconnected.

Examples of Use

? LOVE’s components are connected using terminal processes; a LOVE component
consists of a process written using static channels, with a controllable terminal pro-
cess attached to each channel, linked back to a central controller process that accepts
commands from the LOVE GUI. LOVE’s output terminals can have multiple channels
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connected to them, behaving as . Delta processes.
? occvid provides several kinds of terminal process that wrap a subnetwork of

components such as an input file reader or a stream filter.
The ? CoSMoS implementation of L-systems models the string of symbols as a

pipeline of processes, using terminals to allow new symbols to be inserted into the
pipeline as evolution rules are applied [10].

A terminal process with delta semantics can be used to implement the ◦ Observer
pattern in a process-oriented system, where the terminal can be used to send notifica-
tions to all the processes connected to it, with new processes registering themselves at
runtime. The dnotify process in ? RMoX works this way, providing other processes
with notifications of new hardware devices being connected to the machine. (As de-
scribed in . Delta, this is effectively an emulation of a broadcast channel—but one
where new references to it can be created on-the-fly.)

Another example of a delta terminal is found in ? Occade: the event filter processes
used to receive input events from the user are internally registered with a terminal
that delivers all events to them, which they then filter for delivery to the application
processes.

A terminal process with distributor semantics can be used to implement dynamic
routing based on some aspect of the messages received on the static channel—that
is, when a process registers a new channel end, it also specifies how to identify the
messages that should be delivered to it. The RMoX network stack’s implementation of
TCP has a worker process for each open TCP port; worker processes register a channel
end with a terminal to receive messages addressed to that port.

4.4.5 Hand-Off

PROBLEM: Once a server has established communications with a client, it needs to
delegate dealing with the client to another server.

A server that is communicating with a client may wish to delegate the task of deal-
ing with the client to a different server, without the client being aware that this has
happened. This is called handing off the client to the new server.

The approach is to use a . Private Line for the client-server connection, and to
communicate the mobile server end of the private line to the destination server. This is
completely transparent to the client; in an environment with two-way protocols (sec-
tion 5.3), hand-off can even happen during a client-server conversation with the correct
state in the new server being verified by the compiler. Hand-off cannot be performed
when an explicitly-shared channel is used to provide the server interface (unless all
future clients need to be handed off).

Hand-off has several applications. It can be used to determine what services the
client needs before starting (or restoring from a suspended state—see . Just In Time)
a more specific server process to handle the request. It may be used for load balancing,
with a front-end process distributing clients among a . Farm of servers (an approach
familiar from the world of high-performance network servers). It may be used when a
client does not know which server it should communicate with; a directory server—or
even a hierachy of directory servers, following the model of telephone exchanges—can
hand it off to the correct server.

The easy transparency of hand-off is made possible by the separation of synchroni-
sation objects from processes in process-oriented environments; in an object-oriented
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system, it would be necessary to introduce a proxy object for each handed-off interface
that could hide the details of hand-off from the client.

Hand-off is similar to but distinct from the ◦ Delegate pattern in object-oriented
programming, where an object implements some of its operations by forwarding them
to another object (although this can of course be implemented using processes—and
often is, for example in ? CoSMoS’s space model’s agent-abstraction processes). When
hand-off is used, the original process is no longer involved with the conversation after
it has been handed off, and can proceed with other work.

Where the server processes involved are peers, it may be necessary to use a pattern
such as . Messenger to avoid hand-off causing a cycle in the client-server graph.

SOLUTION: Establish a . Private Line to the client, and pass the end of the private
line to the new server.

Examples of Use

? KRoC’s pony module uses hand-off to implement transparent networking for mobile
channel bundle ends. When a mobile channel bundle end is communicated across
a network link, a notification message is sent to the pony system on the destination
host, and the local channel bundle end handed off to a pony process that serialises and
deserialises the data communicated and sends it across the network, using the . Glue
technique to maintain normal occam-π channel communication semantics.

Some ? CoSMoS simulations use hand-off to allow agents to move between differ-
ent . Location processes. Each agent has a private line to its current location; when
it sends a message to the location indicating that it has moved out of the location’s
region of space, the location hands it off to the next location in the direction of move-
ment, passing its new relative location (meaning that it will eventually reach the correct
destination, even if it has moved across several locations in a single step).

? RMoX uses a hierachy of directory processes as described above to make operat-
ing system services, implemented as server processes, available to user programs.

4.5 Adapting Existing Patterns

Existing patterns from object-oriented design, describing the relationships between
objects in terms of references, can often be used in process-oriented programs to de-
scribe relationships between processes in terms of channels; this section gives some
examples, but many more are possible. The translations are especially direct when an
object-oriented pattern is expressed in terms of . Client-Server interfaces.

The ◦ Facade pattern encapsulates a complex subsystem of objects inside a wrapper
with a simpler interface [87]. Rather than having references to the internal objects
directly, external objects may only reference the facade. Similarly, a process may be
internally composed of a complex network of subprocesses—but rather than giving
those subprocesses direct access to external channels, communications can be mediated
through a facade process. ? RMoX’s kernel is an example of a facade, presenting a
standardised interface to application programs.

The ◦ Adapter pattern uses a wrapper to translate one interface into another [87].
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In a process-oriented system, adapters transform the protocols used between two pro-
cesses—for example, converting one data type into another, attaching tags to data val-
ues, or providing a simple protocol in terms of a more complex one. For a simple
unidirectional protocol, an adapter is a type of . Filter.

For example, in ? KRoC’s file module, the option parser file.get.options was
replaced by file.get.long.options, which supports more complicated styles of option
and exposes a more powerful interface. For backwards compatibility, the original pro-
cess was rewritten in terms of the new process, using an adapter to transform the old
interface into the new one.

A more complicated interface between processes may involve bidirectional pro-
tocols, and multiple channels, with the adapter translating some and leaving others
unchanged. The seekable.wrapper process in ? occvid is an example of this kind of
complex adapter.

The ◦ Proxy pattern involves an object providing the interface of another object
by forwarding requests to it—for example, over a network link [190]. Proxy pro-
cesses are used to create efficient distributed client-server applications; for example,
the ? CoSMoS space model uses proxies for remote . Location processes which cache
the contents of the location and migrate agents moving into the location.

The ◦ Memento pattern involves an object constructing an opaque representation
of its internal state that can later be used to reconstruct it [87]. The equivalent in
process-oriented programming is a mobile process; mementos are used to simulate
mobile processes in environments that do not directly support them (section 2.2.5).

The ◦ Observer pattern involves objects registering to receive later notifications;
this can be implemented using a . Delta-style . Terminal process (section 4.4.4).

4.6 Antipatterns

Antipatterns are the opposite of patterns: identifiable, recurring features of a system’s
design that are known not to work well [58]. Antipatterns represent design approaches
that should be avoided wherever possible.

A general piece of advice is to avoid inventing new kinds of process networks
where possible: if a problem can be expressed in terms of one of the well-understood
structures described in section 4.2, this will usually make it easier to understand and
reason about. This may require introducing additional processes.

4.6.1 Bottleneck

A bottleneck is a single process or synchronisation object that causes other processes
to block: for example, a shared server that every other process in the program commu-
nicates with would be a bottleneck. Not only do bottlenecks tend to serialise the ex-
ecution of the program, reducing opportunities for parallelism, they can also increase
communication overheads, since contended synchronisations are often more expen-
sive than uncontended synchronisations.

Bottlenecks are sometimes unavoidable or even desirable—a barrier is an inten-
tional bottleneck—but often they are simply caused by failing to express potential con-
currency in a problem. When trying to solve the problem of a heavily-contended re-
source, think about how it can be divided up into multiple resources—can a process’s
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PROC receive <ITEM > ([] CHAN ITEM in?, RESULT []ITEM values)

INITIAL []BOOL waiting IS [i = 0 FOR SIZE in | TRUE]:

WHILE any (waiting)

ALT i = 0 FOR SIZE in

waiting[i] & in[i] ? values[i]

waiting[i] := FALSE

:

Figure 63: Receiving from several channels using a state machine

PROC receive <ITEM > ([] CHAN ITEM in?, RESULT []ITEM values)

PAR i = 0 FOR SIZE in

in[i] ? values[i]

:

Figure 64: Receiving from several channels using processes

responsibilities be divided among several smaller processes, or duplicated among sev-
eral identical processes? Does a barrier really need to synchronise every process in the
system, or can you get away with smaller groups of processes being tightly synchro-
nised, with looser periodic synchronisations between them?

4.6.2 State Machine

Solving a problem that has a high degree of natural concurrency in an environment
without support for concurrency usually involves building a state machine. Program-
mers who are used to this approach will often attempt to build state machines in
process-oriented programs—but this is almost always the wrong approach, resulting
in code that is harder to write and harder to understand, and exposes less potential for
parallel execution.

The correct approach to tracking state in a process-oriented program is to use pro-
cesses to do so—that is, to use the position of execution inside a process to represent
the state of the entity being modelled. For example, in a network server that must
deal with many clients communicating using a complex network protocol, a state ma-
chine solution would deal with several clients in one process, with variables to indicate
which messages had been received. A process-oriented solution would use one pro-
cess per client, with the structure of the process corresponding to the structure of the
network protocol.

Multiple processes are useful even for very simple operations. Figure 63 shows
an example of a procedure that reads one value from each of several channels into
an array, keeping track of which channels have already provided a value. This can be
expressed much more concisely using multiple processes: figure 64 shows how parallel
composition can solve the problem. The latter solution allows the runtime system to
decide how best to schedule the inputs, rather than serialising them within a single
process; it offers more opportunities for parallelism.

Similarly, the pause process in figure 50 could instead have been written with a
variable tracking whether the process is paused or not—figure 65. This results in longer
code with fewer invariants—it may be either paused or not at the top of the loop. This
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PROC pause <ITEM > (CHAN ITEM in?, out!, CHAN SIGNAL control ?)

INITIAL BOOL paused IS FALSE:

WHILE TRUE

PRI ALT

control ? SIGNAL

paused := NOT paused

ITEM value:

(NOT paused) & in ? value

out ! value

:

Figure 65: Pause process using a state machine

PRI ALT

channel ? value

... channel is ready

SKIP

... channel is not ready

Figure 66: Polling idiom

is not always the cause—the buffer process in figure 45 is more concise with the full

state variable—but the use of variables that track process state should generally be
cause for concern. A process-oriented programmer should not hesitate to communicate
or present a server interface in more than one place in a loop, if it results in clearer code.

4.6.3 Polling

Process-oriented programs are inherently event-driven, and many process-oriented
runtime systems make use of cooperative scheduling for greater efficiency. If your
program needs to wait for something to happen, it is always better to get the runtime
system to do the waiting for you; it is more efficient, and you will not accidentally
block something else that is trying to run. In general, you should avoid busy-waiting
and polling loops in process-oriented languages.

This is not always possible, of course; sometimes you need to wait for something
that the runtime system does not know how to wait for, such as a change in a hardware
register or a long-running call in a third-party library. In these cases, encapsulating the
polling within a process that presents a channel-based interface will allow choice over
the event being polled (and allow the process to be replaced with a more efficient im-
plementation in the future). Where using choice is not possible, you need to ensure that
you give the runtime system a chance to run other processes while you are waiting—
for example, by explicitly requesting rescheduling during the polling loop.

The “polling” idiom in occam-π is sometimes used to check whether a channel is
ready without blocking (figure 66). For example, a process may have a main loop that
synchronises on a timestep barrier, but also needs to respond to events coming in on
a channel. Since occam-π does not (yet) support choice on barriers, the programmer’s
only option is to synchronise unconditionally on the barrier and poll the channel on
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each cycle. This is easy to get wrong, however: you must make sure that you collect
all events coming in on the channel (that is, keep polling until the input channel is not
ready). Furthermore, you must ensure that the process sending to the channel does
not mind that you are ignoring it until after the barrier has completed—for example,
if you have two processes both enrolled on the barrier that also send messages to each
other at random times, this will lead to deadlock unless buffered channels are used.
You can reason about the safety of this sort of situation by thinking of the barrier as a
client process that drives both the others as servers—and, indeed, the solution to this
problem used in the more recent ? CoSMoS simulations is to have a process enrolled
upon the barrier that invokes the agents through a server interface.



Chapter 5

Language Enhancements

This chapter describes several proposals for language enhancements to better support
process-oriented programming, based upon the design patterns in section 4. While
these features are described in terms of extensions to occam-π, they could equally well
be integrated into other process-oriented environments.

5.1 The Unit Protocol

It is often useful to use a channel purely for synchronisation, rather than for commu-
nication: the programmer does not care what value has been sent, just that the com-
munication has happened. For example, a process representing a button in a GUI will
typically send a message down a channel when it is clicked—but the message contains
no meaningful content; a process waiting for a button click only needs to know that a
message has been received.

In occam, it is necessary for the programmer to use a conventional protocol and
send a “dummy” value (by convention, CHAN BOOL, sending the value TRUE). This is
awkward—not least because it is necessary for the receiver to define a variable to hold
the value being received. A better solution is to define a variant protocol, but it is awk-
ward to include such a protocol definition in every program that uses this approach,
especially as there is no one-line shortcut syntax for variant protocols with a single
message.

In programming languages that provide a “unit type” with only a single value—for
example, Haskell’s ()—a channel carrying the unit type can be used for this purpose.
However, occam-π offers no such type.

occam-π has been extended to allow channels carrying the protocol SIGNAL to be
defined [118]. This protocol has only a single message: SIGNAL (figure 67).

The implementation is simple and fully compatible with existing occam-π code.

CHAN SIGNAL channel:

PAR

channel ! SIGNAL

channel ? SIGNAL

Figure 67: Using CHAN SIGNAL

145
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PROTOCOL SIGNAL

CASE

SIGNAL

:

Figure 68: The definition of the SIGNAL protocol

MOBILE CHAN FOO out!:

MOBILE CHAN FOO in?:

SEQ

out , in := MOBILE CHAN FOO

PAR

out ! some.foo

in ? other.foo

Figure 69: Mobile channel ends

SIGNAL is a built-in variant protocol, defined exactly as if the user had started their
program with the conventional definition in figure 68 [122].

The only change necessary to the syntax of occam-π was to make the CASE keyword
optional in variant input communications such as channel ? CASE tag. This also has
the effect of making the syntax for ! and ? more symmetrical.

As no new keywords are defined, backwards compatibility is preserved with pro-
grams that already use SIGNAL as a name.

5.2 Mobile Channel Ends

At present, occam-π allows ends of channel bundles to be mobile, but not individ-
ual channel ends—meaning that channels must be wrapped inside channel bundles to
make their ends mobile.

The existing syntax for channel end abbreviations in occam-π appends the ! and ?

decorators to the name of the abbreviation. The same syntax could be used for mobile
channel ends (figure 69).

However, this makes it impossible to write the type of a channel end on its own—
for example, if you wanted to declare a protocol carrying channel ends, or define a
type alias. Where does the decorator go? It would be simpler to always include the
direction as part of the type of a channel end (figure 70).

MOBILE CHAN! FOO out:

MOBILE CHAN? FOO in:

Figure 70: Simpler syntax for channel ends
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PROTOCOL DIE.REQ

CASE

roll; INT

quit

:

PROTOCOL DIE.RESP

CASE

rolled; INT

dropped

:

CHAN TYPE DIE

MOBILE RECORD

CHAN DIE.REQ req?:

CHAN DIE.RESP resp!:

:

Figure 71: Die interface using a channel bundle

5.3 Two-Way Protocols

This section proposes two-way protocols as a language extension for occam-π. (A ver-
sion of this section was presented by the author at CPA 2008 [200].)

In a process-oriented system, it is very common to have client-server relationships
between processes: a server process answers requests from one or more clients, and
may itself act as a client to other servers while processing those requests. The . Client-
Server pattern allows the construction of client-server systems of processes that are
guaranteed to be free from deadlock and livelock, and has proved extremely useful
when building complex process-oriented systems. Process-oriented servers have ex-
pressive interfaces: a client-server communication can be a conversation containing sev-
eral messages in both directions, not just a single request-response pair.

Most non-trivial occam-π programs today make some use of the client-server pat-
tern, with communication implemented using channels. However, while occam-π al-
lows the protocol carried over an individual channel to be specified and checked by the
compiler, it does not yet provide any facilities for checking the protocols used across
two-way communication links such as client-server connections.

5.3.1 Client-Server Communication

Client-server communications are currently implemented in occam-π using a pair of
channels: one carries requests from the client to the server, and the other carries re-
sponses from the server to the client. The two channels are usually packaged inside
a channel bundle. We can use this approach to specify a client-server interface to a
random-number generator, which will attempt to roll an N-sided die for you, and ei-
ther succeed or drop it on the floor (figure 71).

The req and resp channels carry requests and responses respectively, each with
their own protocol. In this case, a roll message from the client would provoke a rolled

or dropped response from the server; a quit message would cause the server to exit with
no response. To use this process, a client need only send the appropriate messages over
the channels in the bundle (figure 72).
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PROC roll.die (DIE! die)

SEQ

... obtain die

die[req] ! roll; 6

die[resp] ? CASE

INT n:

rolled; n

... rolled an ’n’

dropped

... dropped the die

die[req] ! quit

:

Figure 72: Using the die interface

SEQ

die[req] ! roll; 6

die[req] ! roll; 6

Figure 73: Using the die interface incorrectly

The syntax for defining and using client-server interfaces is rather clumsy. Each
client-server interface requires two protocols and a channel bundle type to be declared.
The protocol names—DIE.REQ and DIE.RESP in this case—are usually only used within
the channel bundle definition. When sending messages over a client-server interface,
the name of the channel being used must always be specified, even though it is unam-
biguous from the direction of communication whether the req or resp channel should
be used.

More seriously, occam-π provides no facility for specifying the relationship be-
tween the two protocols in a client-server interface. By convention, the programmer
writes a comment saying “replies rolled or dropped” next to the definition of roll,
but this is only useful to humans. The compiler cannot check that the processes using
the channel bundle are correctly ordering messages between channels. For example,
the process in figure 73 correctly follows the protocol on each individual channel—but
it will deadlock because the server expects to only receive a single roll message be-
fore sending a response. At the moment, it will be accepted by the compiler without
complaint.

The vast majority of channel bundle definitions in existing occam-π code are client-
server interfaces like DIE. Providing a more convenient language binding for client-
server interfaces would not only simplify many programs, but also allow the compiler
to detect more programmer errors at compile time.

5.3.2 Related Work

Facilities for specifying two-way communication are present in other concurrent lan-
guages.



CHAPTER 5. LANGUAGE ENHANCEMENTS 149

PAR

-- Client

CALL cosine (RESULT REAL32 result , VAL REAL32 x):

-- Server

ACCEPT cosine (RESULT REAL32 result , VAL REAL32 x)

result := COS (x)

Figure 74: occam 3 call channel syntax

service class Console :

{

...

sequence

receive command

if command

write

acquire String

read

sequence

receive Cardinal

transfer String

}

Figure 75: Honeysuckle compound services

The draft occam 3 language specification [34] described a call channels mechanism
built on top of channel bundles; this provided a way of declaring channel bundles that
were used for call-response communications. The declaration of a call channel there-
fore implicitly defined protocols to carry the parameters and results of a procedure.
The suggested syntax made clients look like procedure calls, and servers look like pro-
cedure declarations (figure 74).

Since ACCEPT is implemented as a channel input for the parameters, followed by
a channel output for the results after the block is complete, it is possible to use it as
a guard in an ALT. The same idea has been implemented in other process-oriented
frameworks such as JCSP [244].

occam 3-style call channels are a useful abstraction for programmers transitioning
from the object-oriented world, since they make calls to a server look like method calls
upon an object. However, they only allow a single request and response; they do not
provide the richer conversations afforded by protocols.

The Honeysuckle language provides facilities for easily composing client-server
systems, with interfaces being defined as services [74]. Of particular interest here are
compound services, which allow a server’s behaviour to be specified using a subset of
Honeysuckle including communication, choice and repetition constructs (figure 75).

This notation is very powerful; it allows arbitrary conversations between a client
and server to be precisely specified. It is, however, possible to specify a protocol that
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contract Die {

in message Roll ();

out message Rolled(int value);

out message Dropped ();

in message Quit ();

state START: one {

Roll? -> (Rolled! or Dropped !) -> START;

Quit? -> FINISH;

}

}

Figure 76: The die interface as a Sing# contract

cannot be statically verified by using repetition with a count obtained from a chan-
nel communication. Such protocols may require runtime checks to be inserted by the
compiler if the repetition counts cannot be statically determined.

The most flexible implementation of two-way protocols is in Sing#, where channel
interfaces are defined using channel contracts [79]. A contract defines a set of states that
the channel may be in and a list of structured messages that may be sent. Each state
defines the set of messages permitted in that state, and the state transitions resulting
from each message (figure 76).

5.3.3 Session Types

Session types [106] provide a formal approach to the problem of specifying the inter-
actions between multiple processes, by allowing communication protocols to be spec-
ified as types. The type of a communication channel therefore describes the sequence
of messages that may be sent across it. For example, a channel with the session type

foo! . bar?

can be used to send (“!”) the message f oo, then receive (“?”) the message bar; the “.”
operator sequences communications.
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Session types can also specify choice between several labelled variants using the
“|” operator. For example,

(left! . INT!) | (right! . BYTE!)

can be used to either send left followed by an integer, or right followed by a byte.
When checking the correctness of a process, a session-type-aware compiler will up-

date the type of each channel as communications are performed using it. For example,
if a channel’s session type is initially foo! . bar? . baz?, after it is used to send the mes-
sage foo, its session type will be updated to bar? . baz?.

Session types were originally defined in terms of the π-calculus, but can also be
applied to network protocols, operations in distributed systems, and—most interest-
ingly for our purposes—communications between threads in concurrent programming
languages.

Neubauer and Thiemann [146] describe an encoding of session types in Haskell’s
type system, representing communication operations using a continuation-passing ap-
proach. Session types may be defined recursively, which is convenient for specifying
protocols containing repetition or state progression—for example, a type may be de-
fined as several operations followed by itself again. The specifications are applied to
sequences of I/O operations, such as communications on a network socket; there is no
discussion of their application to local communication, although the same approach
could be used to sequence communication between threads.

The Ldoos language [69] integrates object-oriented programming and session types.
Its session type specifications cannot contain branching or selection, but they support
arbitrary sequences of communications in both directions, making them more flexible
than simple method calls.

Vasconcelos, Ravara and Gay [234] give operational semantics and type-checking
rules for a simple functional language with lightweight processes and π-calculus-style
channels, where channel protocols are specified using session types. Its session types
may be defined recursively, and may include choice between several labelled options.
It notes that aliasing of channels can introduce consistency problems, since operations
may affect one alias and not update the session type of the others. It demonstrates that
session types can be applied effectively to communication between local concurrent
processes.

The SJ language [108] extends Java with session sockets that are conceptually simi-
lar to TCP sockets (and are implemented using TCP), but over which communication
takes place according to protocols which are defined using session types. It supports
conditional and iteration constructs in which the branch taken is implicitly communi-
cated across the socket by the sending process; this ensures that the two ends cannot
get out of step.

Connected session sockets can be passed around between processes, and the SJ
system tracks their session types correctly even when they are in mid-communication;
this makes it possible to hand off a connected socket to another process to continue the
conversation.
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PROC roll.die (CHAN DIE die!)

SEQ

die ! roll; 6

die ? CASE

INT n:

rolled; n

... rolled an n

dropped

... dropped the die

:

Figure 77: Using the die interface with two-way protocols

5.3.4 Two-Way Protocols

occam-π’s protocols could be generalised so that they can specify two-way conversa-
tions rather than just sequences of one-way communications.

occam-π’s unidirectional protocol specifications can be viewed as a restricted form
of session types: all the communications must be in the same direction, only a single
choice is permitted at the start of the protocol, and no facilities are provided for itera-
tion or recursion within a protocol (although the same protocol can be used multiple
times across the same channel). In order to specify two-way communications, we must
relax some of these restrictions.

For example, the DIE interface above could be expressed as a single two-way pro-
tocol between the client and the server. In this protocol, a client starts a conversation
by sending a roll or quit message; the server will reply to roll only with rolled or
dropped. We can specify this as a session type from the client’s perspective:

(roll! . INT! . (rolled? . INT? | dropped?)) | quit?

(occam-π programmers would not need to use this syntax for protocol definitions;
see section 5.3.6.)

Protocols can contain multiple direction changes; for example:

move! . (moved? | (suspend? . suspended!))

One valid conversation using this protocol would be move!, suspend?, suspended!;
another would be move!, moved?. The conversation suspended! would not be valid.

We constrain the first communication in a two-way protocol specification to always
be an output; this makes it possible for the compiler to always be able to tell in which
direction the next communication is expected to come.

A client-server connection can now just appear as a channel to the occam-π pro-
grammer; there is no need to specify whether a particular communication is a request
or a response, since that is implicit in the operation being used. Our DIE client can now
be written as in figure 77—and the compiler now has enough information to be able to
tell that the equivalent of the process in figure 73 does not conform to the protocol.

Since the session type is now tracked between multiple communications on the
same channel, we could allow sequential communications to be split up over multiple
communication processes: that is, die ! roll; 6 would be merely syntactic sugar for
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die ! roll followed immediately by die ! 6.

5.3.5 Implementation

Two-Way Channels

Two-way channels could be implemented by the occam-π compiler using a pair of
regular channels inside a channel bundle. The transformation required would be very
straightforward, simply selecting the “request” or “response” channel inside the bun-
dle based on the direction of communication. This approach would allow the transla-
tion of occam-π code using two-way channels into code that would be accepted by the
existing compiler.

However, all existing implementations of occam-π channels on a single machine
allow communication in either directions, provided both users of the channel always
agree about the direction of communication they expect. Since session types allow
the compiler to reason about the direction of communication whenever a channel is
used, we can use the existing occam-π runtime’s channels as two-way channels with
no additional overhead.

This also offers a small memory saving: one channel can now be used where two
and a channel bundle were previously necessary. This may be useful in programs with
very large numbers of channels.

Protocol Checking

Checking that one-way protocols are used correctly is simple: each input or output
operation must always perform the complete sequence of communications that the
protocol describes, so the compiler can tell what communications should happen from
the type of the channel alone. Two-way protocols complicate this somewhat because
the protocol may take place across multiple operations. We can solve this problem by
representing protocols as session types, and attaching a session type to each channel
end.

A common representation for a session type is a finite state machine, with each
message being an edge in the state machine’s graph (see figure 5.3.5). The compiler will
translate each protocol definition it sees into a state machine; a session type can then
be represented as a pair of a state machine and a state identifier within that machine.
Given a channel’s current state, this makes it possible to tell whether an operation upon
it is valid, and if so what the resulting state is. The same approach is already used in
Honeysuckle and in implementations of session types in other languages.

Each protocol has an initial state for the start of a conversation. Since occam-π
protocols may be repeated arbitrarily as a whole, a message with nothing following it
in the protocol specification is recorded as a transition back to the initial state.

To check a program for protocol compliance, it is first transformed into a control
flow graph (as Tock already does, in order to perform other sorts of static checks). Each
channel end variable is tagged with a state, starting in the initial state when a channel is
first allocated. The control flow graph is traversed; when a communication operation is
performed upon a channel end, the current state and the message are checked against
the appropriate state machine, and the state is updated. If the communication is not
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210

3

roll!

quit!

INT? rolled?

INT!

dropped?

Figure 78: Finite state machine representing the DIE protocol

valid for the present state, the compiler can report not only that it is invalid, but also
what communications would have been valid at that stage of the protocol.

When two flows of control rejoin, the compiler must check that the state of each
channel end is the same in both flows; this ensures that conditionals and loops do not
leave channels in an inconsistent state. When a channel is abbreviated—either via an
explicit abbreviation, or in a procedure definition—it must be left in the same state at
the end of the abbreviation that it was in at the start. (This rule may need to be adjusted
to support mid-conversation handoff; see section 5.3.6.)

Similarly, when a channel end is sent between processes (for example, as part of
a channel bundle), its state must be preserved by the communication. As with SJ, it
would be perfectly reasonable to hand off a channel end in the middle of a conver-
sation to another process, provided the receiving process agrees what session type it
should have. This allows the process network to be dynamically reconfigured without
consistency problems.

A CLAIM upon a shared channel must start and end with the channel in its initial
state, since the channel must be left in a predictable state for its next user. Shared
channels are the only case in which channel ends may be aliased in occam-π, so this
restriction avoids consistency problems caused by aliasing of session-typed channels.

Note that the channel’s state is not tracked at runtime, as with many other session
types systems. Two-way protocols incur no runtime overheads.

5.3.6 Protocol Specifications

The syntax used so far for session types is hard to read and write, particularly for com-
plex protocols with many choices and direction changes; something more convenient
is needed for use in occam-π. An adaption of the state-based syntax used in Sing# is
one possibility; this section outlines some others.

Starting Small

We must preserve the existing syntax for unidirectional protocols in order to avoid
breaking existing occam-π code, but since a unidirectional protocol is just a special
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PROTOCOL DIE

CASE

roll; INT

CASE

rolled; INT

dropped

quit

:

Figure 79: Using nesting for direction changes

PROTOCOL DIE

CASE

! roll; INT

CASE

? rolled; INT

? dropped

! quit

:

Figure 80: Nesting with directions explicitly labelled

case of a two-way protocol, we can deprecate the existing syntax in favour of a new
one. However, there are some advantages to basing our new syntax on the existing one:
the existing syntax has worked well for over twenty years, and occam-π programmers
are already familiar with it.

We could keep the existing syntax for unidirectional protocols—so communications
in the same direction are still sequenced using ;—but allow an indented block inside
a protocol specification to mean a change of direction. We could then write our DIE

protocol as in figure 79.
This protocol is very simple, but if it had more changes of direction (and therefore

deeper nesting), it would be harder to tell the direction of each communication. We
could require the user to explicitly specify the direction of each communication (fig-
ure 80).

The directions are specified from the perspective of the client. This is more use-
ful for documentation purposes; a programmer is more likely to be writing a client to
somebody else’s server than a server to somebody else’s client. Since all the communi-
cations within a single CASE must be in the same direction, it is somewhat redundant to
specify the direction on all of them; it would be possible to apply the direction to the
CASE itself instead.

This syntax does not allow the full power of session types, though. It is only possi-
ble to have choice at the start of a communication or after a change of direction, which
means you cannot send some identifying information followed by a command. Fur-
thermore, there is no way to name and reuse parts of the protocol; you cannot write
a protocol containing repetition, or share a response (such as a set of error messages)
between several possible commands.
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PROTOCOL ERROR

CASE

! ok

! file.not.found

! disk.full

:

PROTOCOL FILE

CASE

! open; FILENAME

ERROR

! write; STRING

ERROR

:

Figure 81: Two-way protocol inheritance

Protocol Inheritance

How would protocol inheritance (provided in occam-π [27]) work with these simple
two-way protocols? We could allow the inclusion of an existing protocol in a new one
by giving the existing protocol’s name (figure 81). The effect would be as if the existing
protocol’s specification were textually included in the new protocol.

Note that the ERROR protocol’s direction has been implicitly reversed when it is in-
cluded in FILE. In combination with occam-π’s existing RECURSIVE keyword, which
brings a name into scope for its own definition, this approach would allow protocols
containing repetition to be defined recursively.

This approach has several downsides, though. It is only possible to recurse back
to the “outside” of a protocol. Mutually recursive protocols—which may be useful
when you have a protocol that switches between two or more stable states—cannot be
written. It is also difficult to describe the type of a channel in mid-conversation. The
session type of a CHAN FILE after an open or write message has been sent is the same:
the expected messages are those from ERROR. However, it is not a CHAN ERROR, because
after the error message has been sent the next communication will be one from FILE.
This makes it impossible to write a reusable error-handling process.

Named Subprotocols

A more flexible approach would be to allow the user to define named subprotocols
within a single protocol definition—which the compiler will eventually translate into
named states within the protocol’s state machine. Our FILE protocol with errors can
now be written using a subprotocol for error reporting (figure 82).

Note that the message directions are now written consistently between the top-level
protocol and its subprotocol.

We can now refer to a particular state within a protocol when describing a chan-
nel’s type, which lets us write abbreviations and procedures expecting a channel in a
particular state—for example, CHAN FILE[ERROR] c?.

One problem with this is that, by the checking rules described earlier, the use of
c as a procedure parameter would require it to have the same type when the proce-
dure exited—which will not be the case if it has handled the error. To solve this, we
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PROTOCOL FILE

SUBPROTOCOL ERROR

CASE

? ok

? file.not.found

? disk.full

:

CASE

! open; FILENAME

ERROR

! write; STRING

ERROR

:

Figure 82: Named subprotocols

could allow the input and output states of a protocol to be specified in an abbrevia-
tion’s type—for example, CHAN FILE[ERROR, FILE] c?. Another option is to just specify
CHAN FILE and have the compiler infer the input and output states.

The top-level protocol’s name is still made available if RECURSIVE is used. This
could be generalised to permit mutual recursion between subprotocols, which is rather
unusual for occam-π; its scoping rules usually forbid mutual recursion. Mutually-
recursive subprotocols would allow us to specify a protocol with multiple “stable
states”: for example, a network socket that may be either connected or disconnected,
and supports different sorts of requests in different states.

5.4 Clocks

This section proposes clocks as a language feature for occam-π.

5.4.1 Motivation

The . Clock pattern is found in many process-oriented simulations: a clock allows sev-
eral processes to share an idea of virtual time. The virtual timesteps provided by a clock
are often subdivided into . Phases (using the same barrier) to control access to shared
resources. We can combine the two by counting phases as “smaller” timesteps. Both
of these patterns assign higher-level semantics to barrier synchronisation; abstracting
these into library or language features would considerably ease the implementation of
the patterns.

While these patterns both achieve the desired goal of maximal concurrency within
the synchronisation constraints of the problem, they are both usually implemented in
an inefficient way. In a simulation, it is rare that every process using a clock has an
action to perform on every phase of every timestep—yet when the patterns are imple-
mented using barriers, every process enrolled on the barrier must wake up each time
the barrier synchronises, even if it has no work to do. (For example, in the ? CoSMoS
lymphocyte rolling simulation, the lymphocyte behaviour processes only perform an
action in one of the three phases of the barrier; they therefore do three times as many
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CLOCK INT c: -- time type

PAR i = 0 FOR num.agents -- process enrolled on clock

INITIAL INT time IS 0:

WHILE TRUE

SEQ

SYNC c, (time * 10) + 0

-- Phase 0 actions

SYNC c, (time * 10) + 1

-- Phase 1 actions

-- etc.

time := time + 1

Figure 83: Example of clock synchronisation

synchronisations than they need to.) This can be mitigated somewhat by using mul-
tiple barriers for different phases or granularities of time, but this is awkward to pro-
gram.

5.4.2 Using Clocks

Clocks with efficient synchronisation could be provided as a synchronisation object
in process-oriented environments. A clock, as in the design pattern, is a barrier with
a sense of time: each time it completes a synchronisation, the time advances. When
a process offers to synchronise upon the clock, its offer includes the time at which it
wishes to be woken up. Once all the processes enrolled upon a clock are attempting
to synchronise, the clock blocks those processes and completes: it examines its set of
offers to find the next timestep that needs to run, and releases only the processes that
want to be woken during that timestep, leaving the others blocked.

An example of how clocks might look in occam-π is shown in figure 83. The syntax
and semantics of clock references are the same as those of barriers, with the exception
that synchronisation takes an extra argument for the time offer. Dealing with clock
references is similar to dealing with barrier references—for example, they can be gen-
erated by a factory or synchronised between hosts in a distributed application in much
the same way.

Choice over clocks also makes sense: just like a barrier, a clock guard becomes
ready when all processes enrolled upon the clock are offering to synchronise. Once
the guard is chosen, however, the process is blocked until the time it requests comes
around. A process cannot speculatively wait for a later time and then back off before
that time is reached, because changing its time offer retrospectively could result in it
having to run before a process that made an offer between the old and new times.

For example, suppose we have a clock with two processes enrolled upon it. The
first process offers to synchronise at time 2. The second process offers to synchronise
at time 3—so the clock completes, and the first process runs. It is now not safe for the
second process to withdraw its original offer, because if it offered time 1 then it would
not be possible to run it.
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5.4.3 Time Representations

In occam-π, it is traditional to represent real time as an INT—but there is no particular
reason to constrain clocks to integers.

While in theory time could be represented by a “bignum” data type that could grow
to an infinite value, providing a monotonic clock where time only ever increased, it is
often more practical for clocks to use a fixed-size data type (for example, wrapping at
232) or to be forced to wrap at a lower value—a periodic clock. A program that only used
phased synchronisation could use a periodic clock with the period set to the number
of phases.

The only requirement for the type used by a clock to represent time is that it must
be possible for the clock to identify the next time to run from its set of offers. For a
monotonic clock, the next time can be identified simply by choosing the lowest time
offered. (In this case, a process offering a time in the past would run before other
processes—but this could reasonably be detected as a runtime error.) For a periodic
clock, the clock needs to keep track of the last time that ran, and then select the offered
time that is “least ahead” of the last time (i.e. minimise (offer− lastTime) mod period).
A periodic clock must thus work out an initial “last time” when it first synchronises—
which it can do by taking the lowest of its initial offers.

A wide variety of time representations are therefore possible. For many applica-
tions, an integer type will suffice. In a simulation with both timesteps and phases, it
might be convenient to have time be a pair (timestep, phase). Using a Haskell-style ab-
stract data type to represent the phase would allow phases to be named, which would
ease readability (for example, a time might be (42, Move)).

Some problems must proceed in phases, but with “subcycles” of phases being re-
peated an unknown number of times. For example, an implementation of an evolution-
ary algorithm could use a clock to represent the generations of evolution, but inside
each generation a simulation would need to repeatedly evaluate the candidate solu-
tions until the fitness function returns a stable value. One way to achieve this would
be to make the time representation a rational number, and number the evaluation steps
inside each generation as a geometric series converging on the next generation (for ex-
ample, proceeding 1, 1 1

2 , 1 3
4 , 2. . . ).

A clock where the time representation is the unit type, or where all enrolled pro-
cesses always synchronise with the same time, is equivalent to a barrier. Verifying this
mechanically would be a useful check upon algorithms for implementing clocks.

5.4.4 Implementing Clocks

To implement clocks in a process-oriented runtime system, it is instructive to look at
how event-based simulations represent time. A common approach is to use a priority
queue of sets of events, ordered by time. The simulation then only needs to pull the
next set off the queue in order to find both the time that it should run and the set of
events that need processing.

We can combine this approach with the usual implementation of barriers to provide
clocks in a process-oriented system. A trivial barrier has an enrolment count and a set
of blocked processes; when the size of the set reaches the enrolment count, all the
processes in the set are scheduled and the set is emptied. A trivial clock would have
an enrolment count and a priority queue of sets of blocked processes; when the sum of
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PROC clock.server ([] CHAN INT reqs?, []CHAN SIGNAL resps!)

VAL INT N IS SIZE reqs:

[N]INT wake.at:

INITIAL INT time IS 0:

SEQ

-- get initial requests from all clients

PAR i = 0 FOR N

reqs[i] ? wake.at[i]

WHILE TRUE

INT min.diff , next.time:

SEQ

-- find the next time being waited for

min.diff := MOSTPOS INT

SEQ i = 0 FOR N

VAL INT diff IS wake.at[i] MINUS time:

IF diff < min.diff

min.diff , next.time := diff , wake.at[i]

time := next.time

-- run clients waiting for that time

PAR i = 0 FOR N

IF wake.at[i] = next.time

SEQ

resps[i] ! SIGNAL

reqs[i] ? wake.at[i]

:

PROC clock.sync (VAL INT time ,

CHAN INT req!, CHAN SIGNAL resp?)

SEQ

req ! time

resp ? SIGNAL

:

Figure 84: A simple clock implementation

the size of all the sets in the queue reaches the enrolment count, the first set is popped
off the queue and all the processes in it scheduled.

In practice we would not implement clocks this way in CCSP, just as we do not im-
plement barriers using sets [184]. A practical CCSP clock might store blocked processes
in a balanced tree of lists of batches, with a batch list for each time offer.

A prototype implementation of clocks is already available in the CHP library for
Haskell [49]. Alternatively, a clock can be simulated using a server process (figure 84).

5.4.5 Static Checking for Clocks

Static checking features could be used to detect errors in clock usage at compile time.
In particular, it would be useful to detect when a process is using the phase se-

quence represented by a clock in an incorrect way; a process that accidentally synchro-
nised in the order A, C, B, D rather than A, B, C, D would advance two timesteps for
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CLOCK PHASES c:

PHASED(c) READ(LOOK) WRITE(UPDATE) INFO info:

SEQ

...

CLAIM info , c -- c must be in LOOK phase

local := info

...

CLAIM info , c -- c must be in UPDATE phase

info := local

...

Figure 85: Phase-protected resources

each cycle rather than one. (This kind of error might be introduced when a new phase
was added to a clock in existing code.) To detect this, the compiler would need to be
able to tell that the programmer only intended the process to advance by one timestep.

This suggests that providing a richer structure for clock times than just arbitrary
types may be useful—just as occam-π provides protocols for channel communication.
A clock protocol could explicitly specify features such as timestep counts, phases and
repetition of subcycles represented inside a clock. The compiler could then attach ses-
sion types to clock variables (section 5.3.5) to track the possible offers that could be
made using each clock, and warn about unsafe advances.

Another use for session types in combination with clocks would be to allow re-
sources to be protected by clock-implemented phases. A shared resource could be de-
clared as “phased” to a particular clock, with an access list indicating what types of ac-
cess were available in which phase. The compiler could then enforce CREW rules [251]
to ensure that processes can safely read from the resource in parallel but only write to
it one at a time, ensuring that the clock presented as a credential when it is used is in
the correct phase (figure 85).

An alternative to the use of session types would be to provide a PHASE block that
forced the structure of the code to mirror that of the phase structure—but session types
allow the same degree of static checking with more succinct syntax.



Chapter 6

Future Work

This chapter discusses some possible approaches to the future development of process-
oriented programming.

With the rise of parallel hardware and the increasing complexity of computer sys-
tems, concurrent programming certainly does appear to have a future. The interest
in the Go programming language and the widespread reinvention of process-oriented
synchronisation features in other concurrent programming environments both indicate
that process-orientation can play a part in that future. To make this a reality, process-
oriented programming must become a practical approach to software engineering that
can be used in real-world applications; the following sections will discuss some of the
steps that must be taken towards that goal.

6.1 A Standard Interface

As we saw in section 2.3, there are currently a wide variety of concurrent program-
ming environments that offer some degree of support for process-oriented program-
ming. There is, however, no single environment that offers a complete best-of-breed
set of process-oriented programming features, and the features provided by different
environments often differ in subtle ways. Furthermore, there is no standardisation in
the vocabulary used to describe process-oriented facilities. This makes it difficult—as
earlier chapters have shown—to write about process-oriented programming without
including a good deal of implementation-specific detail.

Having a definition of a core set of process-oriented programming features, de-
scribed by a common vocabulary and provided through a standard interface (mod-
erated by the requirements of the particular environment), would make promoting,
teaching and applying process-oriented techniques much more straightforward—in
the same way that the standard vocabulary and interface of the Document Object
Model have made it easier to work with XML in different languages, and to define
other systems that make use of XML [237].

The definition of such an interface is a job for a standards committee—but the fol-
lowing features from existing process-oriented environments should certainly be con-
sidered for inclusion:

• lightweight processes;

• blocking system calls;

162
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• parallel composition;

• forking, with named forking contexts;

• channels, with messages specified using bidirectional protocols, featuring op-
tional buffering, and optional explicitly- and implicitly-shared ends;

• barriers;

• real-time timers;

• clocks;

• choice over arbitrary synchronisation objects, including prioritised choice and
fair choice, and perhaps conjunctive choice;

• extended synchronisation;

• poison, with automatic poisoning of “linked” synchronisation objects (following
the Erlang model), and the spread of poison limited by process groups or poison
filtering;

• single-owner references to data and synchronisation object ends;

• a library of common processes (from section 4.1);

• higher-order process network constructors;

• higher-level features for client-server interactions, including automatic termina-
tion of unused servers.

Several of the more popular process-oriented environments now support the con-
struction of distributed applications that extend synchronisation objects across multi-
ple hosts—for example, through pony for occam-π and the jcsp.net module for JCSP.
Providing a standardised, extensible network protocol for communication between dif-
ferent environments would allow the construction of process-oriented systems span-
ning different languages and types of hardware [61].

It would also be useful to standardise a lower-level concurrency interface—not
channels and barriers, but the primitives from which such synchronisation objects are
built. This would allow the prototyping and implementation of new types of synchro-
nisation object without concern for portability problems. The interface would include
portable atomic and memory-barrier operations (as the java.util.concurrent package
provides), facilities for explicitly scheduling and descheduling lightweight processes,
and a standard interface for choice. (CHP already permits this by using Haskell’s
STM implementation as its low-level interface—but STM operations are arguably too
high-level an abstraction for implementing high-performance synchronisation objects
in general.)

In addition, providing a standard low-level interface would allow experimentation
with different implementations of the primitives to be provided—much as different
MPI implementations can take advantage of different hardware communication facili-
ties, or different Java virtual machines can experiment with new approaches to mem-
ory management. Reference implementations could be constructed from the existing
CCSP and Transterpreter runtimes.
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6.2 Process-Oriented Languages

One approach to the continued development of process-oriented programming is to
further develop programming languages that are specifically designed to support pro-
cess-oriented software development, such as occam-π, Go and XC.

Having precise control over the semantics and implementation of a programming
language offers several advantages for process-oriented development. Static check-
ing is far easier if dangerous and hard-to-analyse language features can be omitted or
restricted. Interfacing with the runtime system becomes more predictable and incurs
lower overheads, allowing advanced features such as mobile processes to be imple-
mented efficiently. Designing a language from scratch allows the entire environment—
not just the language, but the standard library, development tools, and so on—to be
constructed in a way consistent with the process-oriented programming model.

However, maintaining a specialised programming language (of any kind) has sig-
nificant disadvantages. Designing a good programming language that people will want
to use is a very difficult problem—the field of computer science research is littered with
programming languages that have not gained widespread acceptance. Developing a
language specification, compiler and standard library is a lot of work, requiring a dedi-
cated team of programmers and authors willing to engage in what is largely uninterest-
ing donkey-work with little research value. Developing documentation and teaching
material for new users is similarly time-consuming. A new language will have diffi-
culty taking advantage of existing tools and libraries; “glue” must be developed, and
ways found to map existing conventions into new ones. Worst of all, however, is the
difficulty of persuading people to use a new language: programmers must invest sig-
nificant time and effort in becoming proficient with the syntax, semantics, idioms and
libraries of the programming languages they use, and they will not do so unless the
payoff from learning a new language is considerable.

Process-oriented programming languages may have advantages in specific app-
lications—in particular, for embedded programming with constrained resources and
real-time requirements, where programs are relatively small and language features
can be limited. Specialised programming languages have been successful in other
programming styles, where development impetus has been available—for example,
Haskell was designed to replace a large family of existing lazily-evaluated functional
languages [110], and Erlang to support concurrent programming for Ericsson’s tele-
phony applications [15]. While alternative approaches are available—see section 6.3—
the author believes that it is at least worth considering the prospect of further develop-
ment of process-oriented languages.

6.2.1 occam 4

The occam family of languages has not produced a new general-purpose programming
language in several years. occam-π is explicitly maintained as a research language,
constantly changing, lacking a formal language definition or a really solid implementa-
tion, and thus unsuitable for developing real-world applications. However, occam-π’s
basis was in occam 2.1, a stable, well-defined language that was—and, as the core of
occam-π, still is—used successfully in a wide variety of applications. We could, there-
fore, consider developing an “occam 4”: a new language in the occam tradition with
a stable definition, drawing on the features from occam-π that have been found to be
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successful, while correcting the shortcomings of the existing language.
The applications in which occam-π has been used (many of which have been de-

scribed in chapters 3 and 4) should be supported at least as well by a new language.
occam-π has also been used successfully at several institutions to teach concurrent pro-
gramming in the process-oriented style—which implies that a new language should
carefully consider how design choices would affect new programmers. Haskell and
Python are both examples of successful languages that have been designed to support
both practical applications and teaching; this is, by now, a reasonably well-understood
problem.

The development of occam-π has, for the last few years, been documented in the
form of occam enhancement proposals, which collect both proposed and implemented
language features [194]. OEPs describe incremental changes to the existing language
that generally avoid breaking backwards compatibility with existing programs, and
cover everything from trivial syntactic changes (making OF optional in CHAN OF) to
wide-ranging proposals (such as support for exceptions). As of early 2010 there were
some seventy OEPs representing possible changes to the occam 2.1 language, a little
over thirty of which had been implemented.

However, greater opportunities for improvements to the language are possible if
backwards compatibility does not need to be maintained. (In fact, there is relatively
little occam-π code in the real world—certainly far less than Python or Perl, both of
which languages are currently undergoing non-backwards-compatible revisions.) The
author recently conducted a survey of occam 2 and occam-π users to collect sugges-
tions for changes that could be made to occam-π to make it a more generally-useful
programming language, assuming that compatibility with existing code was not a con-
cern. Several responses were received, many of which made similar suggestions.

When asked to identify the general strengths of the existing language that should
be maintained in a new design, those surveyed suggested:

• support for the process-oriented model in general;

• the provision of usage checking and language features that support safe pro-
gramming;

• efficient implementations upon embedded, desktop and distributed platforms;

• clear semantics, with direct correspondence to CSP and pi-calculus models, and
nothing “hidden” from the programmer.

Suggestions for improvements included:

• most features found in other process-oriented environments, such as buffered
channels, implicitly-claimed channel ends, poison, extended outputs, and choice
over all synchronisations rather than just inputs;

• replication over arbitrary sequences (SEQ i IN list), with the replicator variable
being a writable abbreviation;

• type inference;

• Haskell-style type classes;
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• exception handling;

• bidirectional protocols, with protocol delegation;

• templating, allowing processes and protocols to be parameterised by type;

• a proper module system, with support for hiding private definitions;

• simpler scoping rules, since occam’s “:” convention is very unusual by the stan-
dards of modern languages and frequently confuses new users;

• general recursion and tail call elimination, allowing processes to be written in a
more CSP-like style;

• extended barrier synchronisations;

• first-class PROCs, allowing higher-order programming;

• more flexible timers, supporting different resolutions and virtual times;

• enhancements to the abbreviation system, with claiming and enrolling being ex-
plicitly performed as abbreviations;

• making all data mobile by default, with static analysis used to optimise away
movement where not necessary [46];

• clearer semantics for mobile barriers;

• better support for low-level hardware and memory access, including interrupts;

• allowing arbitrary blocks of code to be forked, with names optionally given to
forking blocks;

• more powerful, arbitrarily-nested basic data types, such as dynamically-sized
arrays, algebraic types and union types;

• a wide variety of minor changes to make the syntax more concise, with a closer
resemblance to more recent indentation-structured languages (for example, using
C-style string escape sequences and lowercase keywords);

• changing the name of the language, since “occam” is strongly associated with
INMOS and the Transputer in the minds of many potential users.

While some of these suggestions—such as automatic mobility—require further re-
search, most represent clear and uncontroversial improvements to the language, mak-
ing occam-π into a friendlier, more widely-applicable programming language while
maintaining its general character.
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6.2.2 Go

Many of the features proposed for occam above are already implemented in the Go
programming language. Go offers only a very basic set of process-oriented features—
channels, forking, choice—but is otherwise a relatively rich programming language.
An alternative to adding conventional programming features to occam is therefore to
add the missing process-oriented features to Go.

From the point of view of a process-oriented programmer, the most obvious miss-
ing features in the Go language definition are:

• parallel composition;

• forking contexts;

• protocols;

• prioritised selection;

• some mechanism for shutting down process networks cleanly (such as poison, or
an extension of the existing Go error-handling mechanism).

All but the last of these would be trivial additions to the Go language. Parallel
composition and forking contexts would be particularly useful, and could be imple-
mented very straightforwardly using trivial barriers (which do not even need to sup-
port choice).

In addition, the current prototype implementations of Go are rather primitive com-
pared to other process-oriented environments. The Go runtime emphasises simplicity
over efficiently, using a “big lock” approach, and thus scales poorly on multiprocessor
systems. Rehosting Go on top of CCSP—with CCSP’s primitives extended to support
Go features such as implicitly-shared channels—would allow significantly better per-
formance for Go applications. In addition, the Go compilers provide very limited static
checking; again, occam-π approaches could be easily adapted.

6.3 Embedding Process-Orientation

An alternative to developing a new language specifically for process-orientation is to
embed process-oriented programming within another language. This has stronger im-
plications than simply providing a library of process-oriented facilities, as many ex-
isting process-oriented environments do: it means making use of the process-oriented
style both convenient and safe, as if the facilities had been directly integrated into the
language.

6.3.1 EDSLs

One approach to this is to use a programming language that is sufficiently expres-
sive to allow the syntax and semantics of the concurrency features to be defined in
the language itself. When this approach is used, the concurrency features form an
embedded domain-specific language within the host language [109]. Languages that sup-
port this tend to have very simple native syntax, and are built from simple primi-
tives, so that most of the conventional programming facilities are already described in
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terms of the language itself. Older examples are either untyped or dynamically-typed;
Forth and Smalltalk are examples. Newer examples have extremely powerful—and
frequently very complicated—type systems that blur the distinction between value-
level and type-level programming, allowing the specification of different models of
computation through types.

Haskell [222] and Scala [104] exemplify this style of programming, both having
been widely used for EDSL implementation. As described in section 2.3, both program-
ming languages have built-in support for lightweight concurrency, and both already
have reasonably mature EDSLs for process-oriented programming—CHP for Haskell,
and CSO for Scala. These EDSLs use the host language’s type system to provide some
of the static checking facilities that compilers for dedicated process-oriented languages
would implement. Improved facilities for type-level programming—such as depen-
dent types—are under active development within the functional programming world;
the static checking facilities available to process-oriented EDSLs within functional lan-
guages will only improve given time.

The monadic model of computation used by Haskell is especially interesting, in
that it allows the programmer to distinguish between three types of code in their pro-
gram. A typical Haskell program will combine purely-functional code—with no side-
effects—with code written in the IO monad, which can interact with the real world.
A CHP program adds a CHP monad for concurrent code, within which IO actions and
purely-functional code can be embedded—but a CHP process knows that it cannot be
rescheduled while executing such embedded code. (The same distinction appears in
generator-based Python approaches to concurrency, where calls that may reschedule
must be yielded, and in C libraries that must explicitly pass a concurrency context
around. The distinction between purely-functional vs. purely-imperative vs. fully-
concurrent code could be made explicit in other languages.)

6.3.2 Extending Languages

Rather than using an EDSL, we could instead start from an existing conventional pro-
gramming language, and extend it with facilities that allow our programming style to
be embedded in it. This approach involves more work than using an EDSL, but gives
us a much wider choice of languages to start from: we can pick a language that is
already in use across a range of fields, with existing high-quality open-source imple-
mentations, and with a large userbase who are already familiar with it.

For example, we could start with C++. The C++CSP library already provides
process-oriented programming facilities with lightweight processes for C++, with a
convenient STL-style interface [45]—but it does so by using stack-switching tricks that
are both memory-inefficient and highly unportable, and it provides no static checking.

LLVM, a portable framework for building compilers, may provide a solution to
both of these problems [126]. Clang, LLVM’s frontend for C and C++, is designed
to support static analysis of programs; we could modify C++CSP to provide hints to
Clang about the processes and references present in the program, and then write static
analysis tools using LLVM’s facilities that not only perform the usual occam-π-style
static checks, but also calculate the exact stack requirements of each process. In this
case, the only modification necessary to the C++ language would be the addition of
some LLVM annotations that would never be visible to application programmers.
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Given this analysis, C++CSP could then be built on top of an existing process-
oriented scheduler such as that from CCSP, with a new LLVM intrinsic provided to
switch stacks between lightweight threads in a portable way; this would allow light-
weight concurrency on any platform supported by LLVM. Some work has already
been done on this to support compiling occam-π using LLVM, with CCSP as a sched-
uler [183].

The result would be a system that offered the safety and most of the convenience
of a dedicated process-oriented language, with the portability, familiarity, low mainte-
nance requirements and easy access to existing libraries of a mainstream programming
language. Compared to the approach taken by Handel-C and XC—where a process-
oriented language was extensively modified to achieve the appearance and behaviour
of a C-style language, for a target audience familiar with C—this approach requires
less work and will achieve better performance.

Other approaches to concurrency—notably Apple’s Grand Central Dispatch [12],
and Intel’s Threading Building Blocks [113]—have similarly been implemented as li-
braries on top of C++, with minor extensions to the language to support better inte-
gration with the compiler and runtime system. C++0x provides some extensions—
anonymous functions, for example—that make embedded languages such as these
more convenient.

C++ is not the only option here; other possibilities include Java and C#, both of
which already run on virtual machines that interact with operating system threading
facilities. In both cases, the virtual machine could be modified to use an existing light-
weight threading system instead, allowing languages running on top of the VM to
take advantage of lightweight threads. (The Python virtual machine has already been
modified to run on top of CCSP with some success.)

6.4 Revisiting Object-Orientation

Object-oriented programming is currently the most widely-used approach to software
design; it is sufficiently ubiquitous that it is usually the first approach taught to new
programmers, and—in many cases—the only one they will encounter in the real world.
Earlier chapters have drawn strong parallels between patterns in object-oriented and
process-oriented software engineering. To understand the reasons for this, we must
examine the history of object-oriented programming.

Object-oriented programming began with Simula, a language developed to sup-
port event-based simulation. Simula is a concurrent language, providing coroutines as
a primitive and processes and queues as library features [218]. Entities in a simulation
are modelled by processes, which can be suspended and later reactivated, and which
can synchronise in simulated time using a clock-like mechanism. Simula objects have
methods that can be invoked by other objects—but they also have a flow of control,
and can be either active or passive as required.

Object-orientation was really popularised by Alan Kay’s group at Xerox, who, in-
spired by Simula, had developed FLEX—a personal computer system where “persis-
tent objects like files and documents were treated as suspended processes” [124]. Dur-
ing the development of FLEX, Kay “realized that the bridge to an object-based system
could be in terms of each object as a syntax directed interpreter of messages sent to it.
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. . . The mental image was one of separate computers sending requests to other com-
puters that had to be accepted and understood by the receivers before anything could
happen.”

The group went on to develop Smalltalk: an object-oriented language designed
to be simple enough for children to use, in which “everything is an object”, “objects
communicate by sending and receiving messages” and “objects have their own mem-
ory”. The idea of Smalltalk objects as active entities with their own motivations was
paramount: “Since control is passed to the class before any of the rest of the message is
considered—the class can decide not to receive at its discretion—complete protection
is retained. Smalltalk-72 objects are “shiny” and impervious to attack.”

The original Smalltalk idea of an object is therefore far closer to the process-oriented
idea of a server process than the passive C++-style objects now common in object-
oriented languages; “active objects” are a reinvention of the original ideas about how
objects should behave. It should therefore be no surprise that patterns that work for
objects can also work for processes—and vice versa. We can consider how some of the
features of process-oriented environments may be applied to object-oriented environ-
ments.

Making objects into active server processes with a flow of control has distinct ad-
vantages, as seen in the . Client-Server pattern: an object responds to messages it
receives by executing methods. Objects could continue to do work in between ac-
cepting requests, giving greater opportunities for parallelism, and objects would have
control over when they chose to accept requests. (Method execution need not be en-
tirely serialised, as in the ◦Monitor Object pattern [206]—an object could respond to
a request by forking a worker process to execute a method.) Treating method calls as
really being message-passing between objects means that self-messaging needs to be
rethought—but this need only be a conceptual change, since one method can call an-
other without a message needing to be sent. Inheritance can be implemented either
by delegation (late binding) or by importing methods from the namespace of another
class (early binding).

Single-owner references should be as useful in an object-oriented system as they
are in a process-oriented system: in a concurrent system of objects, tracking ownership
of resources and preventing unsafe aliasing is equally important [105]. In systems that
use garbage collection, single-owner references may provide performance advantages:
when a reference is destroyed (rather than passed to another object), the corresponding
object can immediately be considered dead, and discarded or recycled.

Interface abstraction—separating communication links from processes—is a pow-
erful tool under certain circumstances (see . Hand-Off and . Just In Time). In most
object-oriented systems, however, an interface to an object is simply a reference to an
object; you cannot create the interface separately from the object itself, making it awk-
ward to construct systems of objects containing circular references. An object-oriented
language could offer interface abstraction as an optional facility, creating a lightweight
proxy for an object that would be created later.

Method calls in object-oriented systems only permit very simple forms of interac-
tion between objects—in process-oriented terms, just simple request-response pairs.
More expressive interactions—such as the three-step exchange in the . Loan pattern—
can only take place using multiple method calls, in which case the type system cannot
enforce the correct order of interactions. These kind of coroutine-like interactions could
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be specified using an object-oriented equivalent of stateful bidirectional protocols (re-
ally just sequences of requests and responses): “co-operations”?

As servers are so common in process-oriented systems, and so close in concep-
tual scope to objects, it would make sense to provide syntax for defining and using
servers in process-oriented environments that mirrors the syntax for defining classes
and calling methods upon objects in object-oriented languages. Given this, it would
be possible for future programming languages to provide a seamless integration of
process-oriented and object-oriented features—concurrency for all!



Chapter 7

Conclusions

This section demonstrates how the pattern language described in chapter 4 can be used
to design, discuss, and reason about a complete, if small, piece of real-world embedded
software—a scrolling LED matrix display controlled by an Arduino—and reflects upon
the outcomes of this work.

7.1 A Worked Example

The Arduino is just about the smallest machine that occam-π is currently useful on,
with only two kilobytes of RAM and an 8-bit AVR CPU; nonetheless, it can run a cou-
ple of dozen concurrent processes using the Transterpreter runtime. occam-π develop-
ment on the Arduino is supported by the Plumbing environment (section 3.10).

A light-emitting diode consists of a semiconductor element that emits light when a
current is passed through it. LED matrix displays are widely used for changeable signs
and advertising applications; they consist of a tightly-spaced grid of LEDs, each of
which can be individually controlled, allowing messages and images to be displayed.
Modern matrix displays are built from LED matrix modules, which provide standard-
sized rectangular sections of matrix that can be slotted together; 8 × 8 single-colour
modules are cheap and readily available.

The simplest way to control such a display would be to connect each LED to an
output pin on a microcontroller. However, this would require an impractically huge
number of output pins—and an equally complex circuit board layout—to drive even
a small display. Instead, an LED matrix is constructed as a grid of horizontal and ver-
tical conductors, with an LED connected between the conductors at each intersection.
To turn on an individual LED, a voltage must be applied across the corresponding hor-
izontal and vertical conductors. However, this makes it impossible to display arbitrary
patterns on the display: you cannot, for example, turn on just two LEDs that are diag-
onally adjacent to each other, because the voltages applied would result in other LEDs
adjacent to those also turning on.

Matrix displays get around this problem by taking advantage of persistence of vi-
sion. A picture is displayed on a matrix by lighting up only one column of the matrix
at a time, cycling between columns at a rate sufficiently high that the human eye can-
not perceive the flickering of the image. To compensate for each column only being
turned on for a fraction of the time available, the LEDs are normally lit to a much
higher brightness than would be used for a static display.

172
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store

display

Figure 86: Outline process network for the matrix display

PROC store.column (CHAN COLUMN in?, out!, to.display !)

CHAN COLUMN thru:

PAR

delta (in?, [to.display!, thru !])

holding.buffer (thru?, out!)

:

Figure 87: Matrix column store process

Our objective is use an Arduino to control an LED matrix display, displaying mes-
sages that scroll smoothly across the matrix. The Arduino has 18 input-output pins,
which is sufficient to drive an 8× 8 matrix module, and the AVR microcontroller has
just enough output current drive capability to allow the module to be directly con-
nected to it.

The program running on the Arduino has two major responsibilities: it it must
store the message being displayed, scrolling it along the display a column at a time,
and at the same time it must light up the columns of the display one by one as rapidly
as possible. These clearly need to interact, but they are separate concerns with dif-
ferent timing requirements, and can therefore be most easily represented as separate
processes, store and display, connected by channels through which each new set of
columns can be delivered to the display when necessary (figure 86). The COLUMN data
type is simply an 8-bit byte, with a 1 bit indicating that the corresponding LED should
be turned on.

The store process is a kind of . Buffer, holding eight column values. We can use
the . Pipeline pattern to construct an eight-place buffer from eight single-place buffers;
store is therefore a pipeline of eight store.column processes.

When a store.column process receives a new column value, it must do two things:
pass it on to the display process to show, and send the previous column value that it
received on to the next store.column, so the columns scroll along the display. Again,
these are two separate responsibilities, and can be implemented as processes—both of
which are standard process patterns: distributing a value to multiple output channels
can be done using a . Delta, and holding on to a value until a new one is received is
the job of a one-holding . Buffer. This means that store.column is simply a network of
standard processes (figure 87).
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PROC display.column (CHAN SIGNAL in?, out!,

CHAN COLUMN from.store?,

VAL BOOL first)

SEQ

IF first

out ! SIGNAL

INITIAL COLUMN v IS 0:

WHILE TRUE

ALT

from.store ? v

SKIP

in ? SIGNAL

SEQ

... light up column briefly

out ! SIGNAL

:

Figure 88: Matrix column display process

The display process can similarly be constructed from eight simpler processes—
but now these processes must take turns to light up their column of the display. We
can implement this sharing using a . Ring, with a token that permits the process hold-
ing it to use the display. display is a ring of eight display.column processes. Each
display.column process makes a choice between receiving a new column to display,
and receiving the token; when it receives the token, it lights up its own column briefly,
then passes the token on (figure 88). The only special arrangement that must be made
is for one of the processes in the ring (it does not matter which) to introduce the token.
Note that there is no absolute synchronisation to real time here: the token can circulate
at whatever speed the rest of the system permits.

Most of our process network is in place. We need a . Producer to generate the
columns that will appear on the display at a fixed rate. (This is simple enough to
write as a single process, as we did in practice—but it could be decomposed further
for greater flexibility if necessary: for example, it could be a short pipeline, with a
generator that emitted ASCII characters, followed by a . Filter to convert characters
into lists of columns, and finally a . Valve to allow the speed to be controlled.) We
need one final process to make the system work: the unused output channel from the
last store.column process must be connected to a . Black Hole, to discard columns that
“fall off the side of the display”.

The complete process network is shown in figure 89. Is this system safe? First, we
must look at the ring: it has one token and eight places of buffering, so it will circulate
without deadlock, and the code executed when the token is received is guaranteed to
complete in a finite time, so it will not block the display.column processes’ other com-
munications. The rest of the system can now be considered using the . Client-Server
design rules: each channel communication is a simple request, and all the processes
follow the rules for clients and servers. So yes—we can be certain that this system will
not deadlock.

While this system works well, it is only driving a very small display, wide enough
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Figure 89: Complete process network for the matrix display
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Figure 90: Distributed matrix display

for only one or two characters—not yet useful for practical applications. To support a
larger display, we need some more hardware. We could connect the rows of several
display modules together, and use an external decoder chip to drive more columns
(since we know that only one column need be turned on at once), or we could upgrade
to a more expensive AVR processor with more I/O pins. In either case, we can simply
expand our existing process network: the same processes can be used and the same
safety guarantees hold.

But if we want to stick with the standard Arduino hardware, we must take a dif-
ferent approach. Recall that we have used 16 of the Arduino’s 18 pins. The AVR chip
supports serial communication on two of the pins. These are normally used to commu-
nicate with a host computer when developing software—but we can use them instead
to communicate between different Arduinos. If we chain the serial output of one Ar-
duino to the serial input of another, we can construct a pipeline of Arduino boards,
each of which drives one matrix display.

Taking advantage of this requires only a very simple modification to the process
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Figure 91: Three running matrix displays (photo by Christian Jacobsen)
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network. We remove the black hole process, and replace it with a serial output process
(a standard Plumbing component) that writes each column’s value to the serial port as
it is received. On every Arduino but the first in the pipeline, we remove the message
generator and replace it with a serial input process that receives column values from
the serial port and outputs them to a channel. As a result, each column that scrolls off
the end of the first Arduino’s display will appear at the start of the second one—we
have distributed our pipeline across multiple Arduino boards, with a separate ring for
each display (figures 90 and 91). This is an example of the ◦ Proxy pattern, used to
extend a channel interface over a “network” link.

(The complete source code for this program is included as the ledmatrix example
in the Plumbing distribution.)

7.2 Reflections upon Confidence

The pattern descriptions in “A Pattern Language” (section 2.4.1) included an indication
of the authors’ confidence in their patterns: did they think they had found the best
solution to a problem, or merely a solution? We can consider the patterns described
here in the same way.

Some patterns clearly deserve a high level of confidence. For example, . Pipeline
and . Client-Server are not only widely used in process-oriented programming, but
have been discussed in the literature of other programming styles as well. Other pat-
terns are more specifically tied to the programming style, such as . Acknowledgement
and . Private Line, but similarly have been successfully applied in a wide range of ap-
plications. A few patterns are more recent inventions, and been used only a handful of
times so far—. Clock, . Loan and . Messenger being examples—but are so clearly the
correct (and non-obvious) approach to use in the existing applications that their future
utility seems assured.

Some patterns—notably . Just In Time and . Snap-Back—are not so well-tested.
They have been successfully applied several times, but often within a closely-related
set of applications; perhaps they will not prove useful elsewhere, in which case they
should not remain in a catalogue of general patterns, or better patterns will be found
to replace them. However, in these less certain cases, it seems better to document the
patterns as they currently exist than to omit them entirely. (Predicting the future is
difficult—it is always possible that some future process-oriented designer will invent
an improved replacement for the client-server pattern.)

In “Design Patterns” (section 2.4.2), we saw that “patterns are not about designs
. . . that can be encoded in classes and reused as is” [87]. As process-oriented environ-
ments become more capable, with more expressive type systems and more powerful
static checking features, it will become possible to provide more of these patterns as
reusable code libraries—and where a distinction cannot be drawn between the abstract
idea of a pattern and its concrete implementation any more, the pattern will arguably
no longer be valid. Patterns such as . Black Hole and . Clock seem likely to disappear
in this way (whereas, for example, the general pattern . Consumer that black holes are
a specialisation of will remain). This is not an indication of weakness in the patterns
themselves; merely an example of how patterns in software engineering tend to in-
fluence the development of programming languages—after all, channels and isolated
processes started life as patterns.
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7.3 Contributions

Several contributions have been made during the course of this work.
The primary aim of this work was to establish a pattern language for process-

oriented design, documenting best-practice solutions to the challenges of concurrent
software design in the process-oriented style, and providing a common technical vo-
cabulary that can be used to discuss and reason about process-oriented software. This
aim has been achieved (chapter 4). It should be noted that this is an initial pattern
language; it should be expected—and allowed—to develop and expand over time, as
facilities in process-oriented environments develop and further experience is gained
with process-oriented design.

The patterns have been successfully applied during the design and implemen-
tation of several new pieces of process-oriented software, including LOVE, a fam-
ily of frameworks for audio processing and music synthesis using process-oriented
techniques (section 3.7), and Occade, a module for programming arcade games in a
process-oriented style, now in use for teaching concurrent programming at Kent (sec-
tion 3.8). Significant contributions were also made to the RMoX project, a process-
oriented operating system (section 3.4), and the TUNA project, investigating strategies
for engineering and simulating emergent systems (section 3.5). The patterns described
here are being used today as the basis for the development of higher-level patterns for
complex systems simulation using process-oriented techniques as part of the CoSMoS
project (section 3.9) [171, 9].

Based upon these experiences, proposals have been made for new facilities in pro-
cess-oriented programming environments to better support the use of the . Client-
Server, . Phases and . Clock patterns (chapter 5). In addition, important contributions
have been made to infrastructure for the development of process-oriented software:
the first version of Tock, a new compiler for occam-π and other concurrent languages,
written using a functional nanopass approach (section 2.3.2); a set of standard tools
for packaging and documenting occam-π modules (section 3.3.1); and numerous en-
hancements to the KRoC standard library (section 3.3).

Applications have so far been identified for process-oriented programming in the
fields of systems programming, multimedia processing, games development, embed-
ded software and complex systems simulation. The author is confident that the pro-
cess-oriented approach will, in the future, enable the engineering of complex, scalable,
efficient and correct concurrent software in an expanding range of application areas
throughout the world of software development.
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