
 

CoSMoS: A Reusable Approach to
Complex Systems Simulation

Adam T. Sampson
School of Computing, University of Kent



The CoSMoS project

● Developing an engineering process for the 
construction and use of complex systems 
simulations across all fields of scientific 
experimentation

● EPSRC-funded 4-year interdisciplinary project 
spanning multiple institutions



Some terminology

● Complex systems consist of many interacting 
components, and often exhibit emergent 
behaviours

● Models are abstractions used to describe and 
reason about a system

● Simulations are executable models that can be 
used to perform experiments



Who's involved?

● York
– Susan Stepney

– Jon Timmis

– Andy Tyrrell

– Fiona Polack

– Paul Andrews

● Abertay
– Jim Bown

● UWE/BRL
– Alan Winfield

● Kent
– Peter Welch

– Fred Barnes

– Adam Sampson

● Microsoft Research
● Celoxica



Why CoSMoS?

● At the moment, most researchers build 
simulations from scratch in an ad-hoc fashion

● This causes various problems:
– Duplicated effort

– Inefficient implementation

– Hard to reason about simulation validity

– Peer review of your paper won't find errors in your 
simulation...



The CoSMoS process

● The CoSMoS process is an agile approach 
based on design patterns
– Select the patterns that suit your particular problem

● Patterns for all stages of development: design, 
implementation, application, analysis, validation

● Document assumptions at all stages
● Defined roles

– How to interact effectively with your domain expert

● A library of reusable software components



Different models



Collecting patterns

● Our approach is driven by case studies
● We're implementing and experimenting with 

many different case studies, and extracting the 
useful common elements as design patterns

● Several sources of case studies:
– standard textbook examples (e.g. bird flocking)

– interesting papers (e.g. Amos' annular sorting)

– real applications from CoSMoS partners (e.g. plants, 
lymphocyte rolling, granuloma formation, social 
exclusion...)



Building simulations

● The simulations we've implemented so far are all 
agent-based, with agents implemented as 
lightweight threads (processes)

● We aim for scalability over straightline 
performance
– Many emergent systems require large populations to 

produce interesting behaviours

– Some overhead is acceptable if it lets you run bigger 
simulations by using multiple CPUs/machines



Case study: bird flocking

● Our first case study: Reynolds' boids
● Birds form flocks through simple rules:

– Match velocity with birds around you

– Move towards centroid of birds around you

– Avoid collisions

● Developed reusable approach to modelling 
continuous space; reused in later case studies



Boids demo



Distributing a simulation

● Our simulation ran on a single machine to start 
with – but we want to go bigger!

● Divide the simulation across multiple machines...
● ... and have agents migrate between machines 

as they move around in the world
● Developed refactoring patterns for doing this 

efficiently without changing the behaviour of the 
simulation; reused in later case studies



The Tromsø Display Wall



Birds on the Wall

● The Display Wall at the University of Tromsø
● 28 (7x4) fast Linux machines, each with a 

projector attached
● Aimed at distributed processing and scientific 

visualisation – very high resolution display
● A variety of mechanisms for interaction – gesture 

tracking, 3D sound location...
● We ported some of our simulations to run on the 

Wall, adding support for interaction



Birds on the Wall video



Case study: lymphocyte migration

● Our first real application
● HEVs are sections of blood vessel inside lymph 

nodes, where lymphocytes pass from the blood 
system into the lymphatic system

● Lymphocytes collide with the vessel wall, “roll” 
along it, then migrate through into the lymph 
node

● York researchers wanted to experiment with how 
the dilation of the HEV (upon infection) affects 
the rate at which migration occurs...



Lymphocyte demo



Case study: granuloma formation

● Another application: studying the formation of 
granulomas – clusters of cells that fight infection

● We model the network of blood vessels 
(sinusoids) in one lobule of the liver

● Chemokine signals diffuse away from infected 
regions

● Kupffer cells follow the chemokine gradient to 
locate and destroy pathogens

● Work in progress...



Granuloma demo



Irregular concurrency

● Our simulations are not trivially-parallelisable; 
they have a high degree of irregular concurrency

● Agents behave unpredictably with regard to 
when and with whom they communicate

● We need to be able to express this kind of 
concurrency in our programs...

● ... and have a runtime system that can execute 
these sorts of programs efficiently
– Expose the concurrency in your program, and you get 

parallelism for free



Process-oriented programming (POP)

● A practical approach to concurrent design, based 
on the ideas of CSP and the pi-calculus
– This allows static checking of the behaviour of 

programs – e.g. freedom from deadlock

● Isolated processes that communicate by passing 
messages along channels

● Ideally suited for things with irregular 
concurrency – e.g. agent-based simulations, 
network programming

● Many implementations (Google's Go, occam-pi, 
JCSP, PyCSP, CSO, CHP...)



CCSP concurrent runtime system

● Lightweight processes
– Only limited by memory – 8 words per process

– Hundreds of thousands of agents per machine

● World-class performance
– Context switch in the <100ns range

● Automatic load-balancing for multicore CPUs
– Batch processes based on communications

– Minimise cache contention

● Supports multiple languages



Case study: swarm robotics

● Different from the others: this is looking at 
engineering emergent behaviours, rather than 
analysing them
– ... so we enter the process at a different point

● Various applications from the Bristol Robotics 
Lab, treating robots as “embodied simulations”

● Using e-puck robots, which use AVR and ARM 
processors and have significant on-board 
intelligence – no tethering!



The Transterpreter

● Concurrent runtime for embedded devices
● Interpretive VM
● Extremely portable

– Lego Mindstorms RCX/NXT

– Assorted robots

– Atmel AVR (Arduino)

● Used for teaching at Kent and at Allegheny 
College – undergrad concurrency module, and 
taster sessions



Distributed, embedded...



The CoSMoS project

● Building a reusable, agile process for 
constructing and experimenting with complex 
systems simulations

● We have developed techniques for building 
scalable, concurrent, distributed simulations

● Plans for the future:
– Further case studies (e.g. social exclusion)

– More powerful tools for visualising and analysing 
simulation results



Parrots demo



Any questions?

Find out more about CoSMoS:
http://www.cosmos-research.org/

Learn concurrent programming with the Arduino:
http://concurrency.cc/


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

