
 

CoSMoS: A Reusable Approach to
Complex Systems Simulation

Adam T. Sampson
School of Computing, University of Kent



The CoSMoS project

● Developing an engineering process for the 
construction and use of complex systems 
simulations across all fields of scientific 
experimentation

● EPSRC-funded 4-year interdisciplinary project 
spanning multiple institutions



Some terminology

● Complex systems consist of many interacting 
components, and often exhibit emergent 
behaviours

● Models are abstractions used to describe and 
reason about a system

● Simulations are executable models that can be 
used to perform experiments



Who's involved?

● York
– Susan Stepney

– Jon Timmis

– Andy Tyrrell

– Fiona Polack

– Paul Andrews

● Abertay
– Jim Bown

● UWE/BRL
– Alan Winfield

● Kent
– Peter Welch

– Fred Barnes

– Adam Sampson

● Microsoft Research
● Celoxica



Why CoSMoS?

● At the moment, most researchers build 
simulations from scratch in an ad-hoc fashion

● This causes various problems:
– Duplicated effort

– Inefficient implementation

– Hard to reason about simulation validity

– Peer review of your paper won't find errors in your 
simulation...



The CoSMoS process

● The CoSMoS process is an agile approach 
based on design patterns
– Select the patterns that suit your particular problem

● Patterns for all stages of development: design, 
implementation, application, analysis, validation

● Document assumptions at all stages
● Defined roles

– How to interact effectively with your domain expert

● A library of reusable software components



Different models



Collecting patterns

● Our approach is driven by case studies
● We're implementing and experimenting with 

many different case studies, and extracting the 
useful common elements as design patterns

● Several sources of case studies:
– standard textbook examples (e.g. bird flocking)

– interesting papers (e.g. Amos' annular sorting)

– real applications from CoSMoS partners (e.g. plants, 
lymphocyte rolling, granuloma formation, social 
exclusion...)



Building simulations

● The simulations we've implemented so far are all 
agent-based, with agents implemented as 
lightweight threads (processes)

● We aim for scalability over straightline 
performance
– Many emergent systems require large populations to 

produce interesting behaviours

– Some overhead is acceptable if it lets you run bigger 
simulations by using multiple CPUs/machines



Case study: bird flocking

● Our first case study: Reynolds' boids
● Birds form flocks through simple rules:

– Match velocity with birds around you

– Move towards centroid of birds around you

– Avoid collisions

● Developed reusable approach to modelling 
continuous space; reused in later case studies



Boids demo



Distributing a simulation

● Our simulation ran on a single machine to start 
with – but we want to go bigger!

● Divide the simulation across multiple machines...
● ... and have agents migrate between machines 

as they move around in the world
● Developed refactoring patterns for doing this 

efficiently without changing the behaviour of the 
simulation; reused in later case studies



The Tromsø Display Wall



Birds on the Wall

● The Display Wall at the University of Tromsø
● 28 (7x4) fast Linux machines, each with a 

projector attached
● Aimed at distributed processing and scientific 

visualisation – very high resolution display
● A variety of mechanisms for interaction – gesture 

tracking, 3D sound location...
● We ported some of our simulations to run on the 

Wall, adding support for interaction



Birds on the Wall video



Case study: lymphocyte migration

● Our first real application
● HEVs are sections of blood vessel inside lymph 

nodes, where lymphocytes pass from the blood 
system into the lymphatic system

● Lymphocytes collide with the vessel wall, “roll” 
along it, then migrate through into the lymph 
node

● York researchers wanted to experiment with how 
the dilation of the HEV (upon infection) affects 
the rate at which migration occurs...



Lymphocyte demo



Case study: granuloma formation

● Another application: studying the formation of 
granulomas – clusters of cells that fight infection

● We model the network of blood vessels 
(sinusoids) in one lobule of the liver

● Chemokine signals diffuse away from infected 
regions

● Kupffer cells follow the chemokine gradient to 
locate and destroy pathogens

● Work in progress...



Granuloma demo



Irregular concurrency

● Our simulations are not trivially-parallelisable; 
they have a high degree of irregular concurrency

● Agents behave unpredictably with regard to 
when and with whom they communicate

● We need to be able to express this kind of 
concurrency in our programs...

● ... and have a runtime system that can execute 
these sorts of programs efficiently
– Expose the concurrency in your program, and you get 

parallelism for free



Process-oriented programming (POP)

● A practical approach to concurrent design, based 
on the ideas of CSP and the pi-calculus
– This allows static checking of the behaviour of 

programs – e.g. freedom from deadlock

● Isolated processes that communicate by passing 
messages along channels

● Ideally suited for things with irregular 
concurrency – e.g. agent-based simulations, 
network programming

● Many implementations (Google's Go, occam-pi, 
JCSP, PyCSP, CSO, CHP...)



CCSP concurrent runtime system

● Lightweight processes
– Only limited by memory – 8 words per process

– Hundreds of thousands of agents per machine

● World-class performance
– Context switch in the <100ns range

● Automatic load-balancing for multicore CPUs
– Batch processes based on communications

– Minimise cache contention

● Supports multiple languages



Case study: swarm robotics

● Different from the others: this is looking at 
engineering emergent behaviours, rather than 
analysing them
– ... so we enter the process at a different point

● Various applications from the Bristol Robotics 
Lab, treating robots as “embodied simulations”

● Using e-puck robots, which use AVR and ARM 
processors and have significant on-board 
intelligence – no tethering!



The Transterpreter

● Concurrent runtime for embedded devices
● Interpretive VM
● Extremely portable

– Lego Mindstorms RCX/NXT

– Assorted robots

– Atmel AVR (Arduino)

● Used for teaching at Kent and at Allegheny 
College – undergrad concurrency module, and 
taster sessions



Distributed, embedded...



The CoSMoS project

● Building a reusable, agile process for 
constructing and experimenting with complex 
systems simulations

● We have developed techniques for building 
scalable, concurrent, distributed simulations

● Plans for the future:
– Further case studies (e.g. social exclusion)

– More powerful tools for visualising and analysing 
simulation results



Parrots demo



Any questions?

Find out more about CoSMoS:
http://www.cosmos-research.org/

Learn concurrent programming with the Arduino:
http://concurrency.cc/
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